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Short Story 
 

“All the models are wrong, only some are useful” 
– George Box, Mathematician 

A lot of progress is made in modeling India’s air quality from emissions to 
pollution to health impacts to scenario analysis, at regional and urban scales. In 
this working paper, we reviewed the progress made by the modeling community, 
identified some research gaps, and proposed some line items to extend India’s air 
quality modeling efforts (content-wise and institutionally). The landscape review 
is limited to the level of research activities and did not investigate the depth of the 
research activities.  

Applications of classical chemical transport models are limited in India, primarily 
due to operational knowledge gaps. Classical models, with their detailed 
representations of atmospheric processes and emissions, offer the 
comprehensive understanding necessary to tackle our complex air pollution 
issues. Therefore, ensuring that researchers have the resources, training, and data 
needed to engage with this modeling should remain a priority. 

While reduced complexity models can effectively support policy dialogues by 
providing rapid assessments and insights, the core research questions related to 
air quality and its impacts can only be fully addressed when the barriers to 
classical modeling are removed.  

More networking opportunities can bridge the gap between local and global 
researchers, fostering collaboration that enhances the quality and relevance of 
research.  

A model-intercomparison exercise is due for India and the Indian Subcontinent, 
to officially launch a representative emissions inventory and an air pollution 
modeling framework. By strengthening these foundational capabilities, the 
scientific community can produce more robust analysis that inform and assess air 
quality management strategies. 

Better engagement through communication platforms with the public and 
public bodies can ensure that communities understand the research methods 
and their implications, fostering a more informed dialogue and driving 
meaningful, evidence-based policy decisions. 
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1. Air Quality Modeling (AQM) 
 

“All the models are wrong, only some are useful” 
– George Box, Mathematician 

Air quality modeling (AQM) is “data management” and the goal of this exercise is 
to support clean air action planning and implementation (Fowler et al., 2020). This 
data provides us with the baseline to understand the trends that inform us if 
pollution levels are going up or down over time. Various forms of this data can be 
used to raise awareness among the public and the public bodies for informed 
activism and decision making. This data from monitoring networks and modeling 
platforms provides us with the knowledge to validate the progress made or not 
made from various emissions management programs in space and time. All this 
data further strengthens the dialogue between data generators, data consumers, 
policy makers, and the public.  

 

 

 

In this working paper, we refer to AQM following the classical modeling path 
presented in the above figure. AQM is an involved exercise, in need of a lot of data 
and a lot of computational power from the first step of emissions modeling to 
evaluating clean air action plans. When all the components of the exercise come 
together, forms of input and output data can support various stages of air quality 
management process.  
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Key components of AQM 

1. Emissions modeling: The output of this exercise is a multi-pollutant emissions 
inventory that includes model-ready speciation for both aerosols and gases. The 
level of speciation, particularly for volatile organic compounds (VOCs), is 
determined by the chemical mechanism selected for the chemical transport 
modeling phase. This inventory must comprehensively represent all 
anthropogenic activities within the chosen regional or urban airshed, as well as 
natural sources, organized by spatial (model grids) and temporal (seasonality and 
diurnal variations) dimensions. For the anthropogenic emissions inventory, there 
are no user forums or operational training resources available. While fundamental 
equations and some coarse-level methodologies are openly accessible, much of 
the work is localized, relying on available input fields. 

2. Meteorological modeling: The output from this exercise is a three-dimensional 
database encompassing all the essential meteorological parameters, including 
wind speed and direction, temperature, pressure, precipitation, and mixing 
heights (potential boundary layer heights). Typically, the advanced Weather 
Research and Forecasting (WRF) model is employed for this purpose, offering 
multiple physics parameterizations to cater to various geographical contexts 
around the world. This model can generate meteorological fields at a wide range 
of spatial resolutions, down to 1 km, and even 100-500 m in super-high resolution 
downscaling mode. Additionally, there is a well-established user forum for the 
WRF model, featuring a global community of users and mentors who provide 
support and guidance. 

3. Chemical transport modeling (CTMs): This stage integrates outputs from 
emissions and meteorological models, allowing for the analysis of air quality from 
various perspectives. It helps identify the sources contributing to air pollution over 
both spatial and temporal dimensions. Questions such as which hotspots in the 
airshed require immediate attention and whether the proposed clean air action 
plans will effectively reduce current pollution levels, can be addressed using CTM 
outputs. Furthermore, these results are utilized to assess the health impacts of 
excessive air pollution and serve as inputs for cost-benefit analysis of avoidable air 
pollution under "what-if" scenarios.  

4. Ambient and Emissions Monitoring: This is a crucial input to AQM exercise, as 
this provides the necessary information to validate CTMs and subsequently 
validate all the inputs from the emissions and meteorological models. Any 
discrepancies in the emissions and meteorological data will show deviations 
between ground measurements and model results. While data from the 
regulatory monitoring systems is preferred, the emerging technologies in the 
form of sensors and algorithms to retrieve data from satellite feeds are also useful. 
The later datasets are considered unofficial, but a very useful resource to the 
modeling community. 
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2. Scope of this Review 
 

Scope of this working paper is to present the landscape review of research on 
India’s air quality in four core bins – emissions modeling, meteorological 
modeling, pollution modeling, and monitoring. The health-related 
epidemiological studies were left out of this assessment, as they form a larger 
research community (related to medical background) and are covered extensively 
as part of the global burden of disease assessments. Quality checks were 
introduced to also exclude studies related to indoor air pollution. 

The landscape review is limited to the level of research activities on India’s air 
quality and did not investigate the depth of the research activities. 

India is a large and diverse country with a population of approximately 1.4 billion 
and growing. To provide a sense of urban density and monitoring scale, Delhi’s 
population of 20 million accounts for less than 2% of the total, residing in less than 
0.2% of the national land cover, and yet is the most monitored and most studied, 
and most represented in the media for its air pollution problems (Guttikunda et 
al., 2023). A large part of the literature ignores the rest of India and as there is little 
data and studies to quantify the impacts of India’s air pollution.  

A review presented in (Guttikunda et al., 2014) and (Guttikunda et al., 2019) aimed 
to understand the nature of air pollution in India by summarizing the number of 
scientific studies conducted in various Indian cities. The review focused on 
identifying the sources of air pollution and their contributions to ambient PM2.5 
and PM10 levels. Notably, 70% of the published studies repeatedly focused on just 
five cities, highlighting a significant concentration of research efforts in a few 
major urban areas, while many other cities with growing air pollution issues 
remain understudied.   

Number of journal articles published between 2000 and 2017 (from SCOPUS search) with some reference to 
air pollution research in any Indian city. Figure reproduced from (Guttikunda et al., 2019). Delhi remains the 

most studied city in India for air pollution.  

 

In this working paper, we extend our analysis to examine all the available research 
related to air pollution in India published since 2000. This categorization aims to 
provide a comprehensive overview of the state of air pollution research in India, 
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highlighting the areas that have been well-studied and identifying significant 
gaps where more research is needed. Through this review, we aim to 
understand the broader trends in the analytical techniques commonly used 
for India’s AQM exercises. 

By carefully analyzing these trends, we hope to pinpoint specific research gaps 
that, when addressed, can guide the development of more focused and impactful 
studies on air quality. AQM research is crucial not only to advance scientific 
understanding but also to inform the policymaking process. Ultimately, through 
this working paper, our goal is to provide guidance to enhance the quality and 
relevance of air quality studies in India, which can inform effective policy 
development process to reduce the impact of air pollution on public health and 
the environment.  
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3. Data Source 
 

Data collection and analysis was conducted in three stages – first batch in 2014, 
second in 2018/19 and the third in June 2023. The first batch was presented in 
(Guttikunda et al., 2014) and the latter two are documented in brief in this working 
paper. 

To quantify the landscape of air quality research in India, we categorize scientific 
journal articles into those focused on emissions modeling, dispersion modeling, 
source apportionment and air monitoring (including satellite measurements).  

Similar meta-analysis has been conducted in the past, covering various regions 
and sectors, but they often focus on specific topics, allowing for a deeper 
understanding of research levels both qualitatively and quantitatively. This 
process is typically referred to as systematic reviews. For instance, these methods 
are frequently employed to examine the linkages between air pollution and 
health outcomes, such as assessing the prevalence of asthma cases in a region 
based on published research, hospital records, news articles, and other relevant 
sources. We did not do a systematic review. 

Box 1: Keywords used during the initial “SCOPUS” article search 

General search was conducted over title, affiliations, abstract, and keywords – information 
covered under these sub-categories is available for all the articles listed under SCOPUS, for 
free. 

Combination of key words were searched in sets 

• INDIA AND {Air Pollution}  OR  {Air Quality}  OR  {Source Apportionment} 
• INDIA AND {Particulate Matter} OR {Black Carbon} OR {PM2.5} OR PM10 or {sulfur 

dioxide} or {SO2} or {Nitrogen oxides} or NOx or {Volatile Organic Compounds} or 
VOC OR {secondary organic aerosols} 

• INDIA and CAMx OR CMAQ OR {WRF-Chem} OR PMF OR AERMOD OR ISC3 OR 
CALPUFF OR HYSPLIT OR FLEXPART OR {GEOS-Chem} 

• INDIA and EDGAR OR HTAP OR MICS 
• INDIA and {Emissions Inventory}; CITY and emissions 
• INDIA and {aerosol optical depth} 
• INDIA and {air monitoring} and not indoor 
• INDIA and {air } and {receptor modeling} 

Combination of the above keywords were varied by replacing the regional name (INDIA) 
with a city name – India, Agra, Ahmedabad, Allahabad, Amritsar, Aurangabad, Bengaluru, 
Bangalore, Bhopal, Chandigarh, Chennai, Madras, Coimbatore, Delhi, Dhanbad, 
Ghaziabad, Mumbai, Bombay, Gwalior, Hyderabad, Indore, Jabalpur, Jaipur, Jamshedpur, 
Jodhpur, Kanpur, Kochi, Kolkata, Culcutta, Kota, Lucknow, Ludhiana, Madurai, Meerut, 
Nagpur, Nashik, Patna, Pune, Raipur, Rajkot, Ranchi, Srinagar, Surat, Varanasi, Vijayawada, 
Vadodara, Visakhapatnam. 

Combination of keywords for emissions were varied for specific sources – Household, 
{vehicle exhaust} or congestion or traffic, resuspended dust road dust or dust storms, 
power plants or thermal power or power generation, waste burning or garbage burning, 
open fires or biomass burning, biogenics, brick kilns, coal combustion, cow dung. 

Combination of keywords, in the title only was searched for specifc regions - {air } and 
{indo-gangetic} or {bay of bengal} or {indian ocean} or {arabian sea} 
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For India’s AQM, we limited our search to subjective analysis published in peer-
reviewed journals that have a digital object identifier (DOI) listed in the SCOPUS 
database for the period from 1980 to 2022. While this library does not encompass 
all published works, it provides a representative selection of high-impact journals, 
allowing us to effectively capture the research landscape. Although several 
organizations publish air pollution studies that are often referenced in journal 
articles, we excluded these reports from our analysis, as they lack the traceability 
associated with DOI-numbered journal articles. We included both open-access 
and not-open access (needing subscription) articles. 

Several keywords were selected for the initial search to capture a wide range of 
publications. These keywords were used in various combinations, including 
subjects of interest, regions such as "India" and city names, specific pollutants, 
established models for emissions, dispersion, and receptor modeling, as well as 
emission source regions and types, and keywords capitalized and not. A summary 
of the keywords employed in this process is presented in Box 1. Additionally, a 
separate search was conducted using the names of known research 
organizations to ensure that no relevant studies were excluded. 
 

Box 2: Keywords used for article cateloging 

For emissions inventory, we conducted search under two bins – one looking at general 
emission publications and one looking at sources. We also looked at specific acrnoyms 
referring to global emission inventories 

• Emissions (bin 1) - emissions inventory, emission inventory, emission factors, 
emission factor, EDGAR, HTAP, GAINS 

• Emissions (bin 2) - vehicle emissions, vehicle exhaust, diesel, gasoline, CNG, LPG, 
power plants, power generation, brick kilns, industrial emissions, coal 
combustion, cookstoves, road dust, dust storms, open fires, biomass burning, cow 
dung, biogenics, waste burning, garbage burning – in this case, we looked for 
minimum 2 hits (under the assumption that for any paper with one source 
discussed, will surely use the keywords from bin 1) 

For air monitoring, we conducted search under two bins, to emphasize the new 
developments in the use satellite data retreival programs to address the gaps in ground 
level monitoring 

• General monitoring (bin 1) - air monitoring, health impacts, mortality, air quality 
index, aqi, exposure, aerosol optical depth, aod, satellite 

• Satellite monitoring (bin 2) - aerosol optical depth, aod, satellite 

For dispersion modeling, we conducted search focusing on the commonly used models, 
under the assumption that if the paper presents any dispersion modeling results, it is likely 
to mention the model in the title or the abstract or the keywords 

• CAMx, CMAQ, WRF-chem, dispersion modeling, UrBAT, ATMoS, ISC3, AERMOD, 
CALPUFF, HYSPLIT, GEOS-chem, FLEXPART, meteorological modeling, WRF-
CMAQ, WRF-CAMx 

For source apportionment, we conducted search for receptor modeling based papers 

• PMF, CMB, receptor modeling, source apportionment 

The four core areas are the “pillars” of AQM community. Not only the published 
research on air pollution, but also the practitioners can be broadly binned into 
these four categories, with groups commonly specializing in ground monitoring, 
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satellite data retrievals, emission measurements, dispersion modeling, chemical 
analysis for receptor modeling, and data mining, and all of them feeding into the 
integrated air quality research.  

Cataloguing the articles to a specific core area, using keywords was challenging. 
With some back and forth, several keywords were identified for each of the core 
areas, listed below, which were further explored during the exercise. 

The selection of keywords is based on our understanding of models, data 
available, data often referred to, and methods employed for analysis under each 
of these topics. There is a lot of potential to improve these searches in the future. 
For example, in case of source apportionment, since it includes chemical analysis, 
any paper which published a chemical analysis is likely to provide a hit, but it is 
not necessary that the paper is looking to estimate the source contributions 
following receptor modeling. This review will require deep diving into each of the 
selected papers at the end of pooling. We limited the analysis to  key categories 
and subject matters only.
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4. India’s AQM Landscape Review 
 

Between 1980 and 2022, the number of publications related to air pollution 
research in India has shown a steady increase, reflecting growing interest and 
attention to this critical issue. This trend is accompanied by an increase in the 
number of authors per paper, indicating a shift towards more collaborative 
research efforts over time. On average, the selected papers feature 4.25 authors, 
with a median of 3.0. These figures highlight the increasingly collaborative nature 
of research on India’s air quality and the importance of interdisciplinary teams in 
addressing complex environmental challenges. 

Number of journal articles published between 1981 and 2023 (from SCOPUS search). More than 
60% of these articles were published after 2014 (last ten years).  

 

When the papers were categorized by first author nationality, it became evident 
that studies with a non-Indian first author outpaced those led by Indian authors. 
While this categorization was based on a subjective assessment of names, which 
led to the exclusion of 200 papers, the trend remains clear. Papers with non-Indian 
first authors had an average of 5.6 authors, compared to 3.7 for Indian first-author 
papers. In 2017, the gap was particularly stark, with non-Indian-led papers 
averaging 8 authors, while Indian-led papers averaged around 4. This suggests 
the need for greater support and networking opportunities for Indian 
researchers to engage in larger, global research efforts. 

The keywords were analyzed to see growing and changing trends in the air quality 
modeling community. Here are some of the fields, which showed a growing 
increase in the occurrences 

• Among the key categories, monitoring methods-based papers are the most  
• Among the pollutants, PM is the most studied (~40%) 
• Among the fuels, diesel is most studied 
• Among the meteorological models, WRF is the most utilized (~90%) 
• Among the chemical transport models, WRF-Chem is the most utilized 
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• Among the receptor models, PMF is the most utilized, followed by CMB 
• Among the source types – traffic, vehicle exhaust, congestion, power plants, 

biomass burning, open waste burning, and dust are most mentioned. In 
general, transport related sources are mentioned the most 

• Among the satellites, MODIS and TROPOMI are the most referred and in the 
recent papers (post 2021) TROPOMI is the most utilized 

• Among the monitoring networks, AERONET is the most referred and 
utilized. Post 2021, low-cost sensor networks are more mentioned 

• Among the modeling papers, EDGAR global emissions inventory is the 
most referred and utilized. 

Comparison among the key components of AQM 

 
Many papers published on India's air quality focus on monitoring-based research, 
accounting for approximately 63% of the pooled total. When papers utilizing 
newer methods, such as satellite data and information technology (including 
AI/ML-based approaches), are included, this share rises to 77%. In contrast, only 6% 
of the papers showed specific discussion on air quality modeling (involving 
chemical transport models). 

This reflects a clear preference for monitoring studies over other aspects of air 
quality research, such as emissions modeling, dispersion modeling, or receptor-
based analysis. A subjective conclusion we draw from this trend is that publishing 
monitoring-focused journal articles tends to be easier compared to other more 
complex (and data involved) components of air quality modeling. 

Monitoring studies often involves fewer uncertainties and minimal operational 
requirements, making them simpler to conduct and present. These studies 
typically follow a straightforward approach: set up monitoring instruments, collect 
data, plot results, and discuss general trends. This method requires less 
explanation of methodologies or interpretation of ambiguous results, as it revolves 
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around direct measurements. In contrast, modeling studies require more complex 
data interpretation, deeper technical expertise, and often involve higher 
uncertainties due to the need for assumptions and predictions. The relative 
simplicity and clarity of monitoring-based research, therefore, may contribute to 
its higher representation in published literature on India’s air quality. 

This observation regarding the prevalence of monitoring-based studies is in no 
way intended to downplay the complexity involved in air quality monitoring itself. 
In fact, monitoring requires a high level of technical expertise in setting up and 
operating the instruments, as well as rigorous quality assurance and quality 
control (QA/QC) procedures to ensure the accuracy and reliability of the data. The 
challenges of maintaining equipment, ensuring proper calibration, and 
interpreting the data are significant and require substantial knowledge and 
technical skill. However, the conclusions here are drawn specifically from the path 
to publication, where monitoring studies tend to face fewer hurdles compared to 
other more intricate research areas like emissions or chemical transport modeling. 
In other words, this also highlights the academic pressures to publish more 
and faster. 

While the share of pollution modeling papers is significant, a closer look reveals 
that most of them focus on meteorological modeling using the WRF (Weather 
Research and Forecasting) model. This can be attributed to several factors: first, 
the WRF community has made the model highly user-friendly, with easy access to 
download, compile, and run the software, accompanied by clear instructions and 
open access to input fields. Despite the high computational demands, the 
adoption of WRF modeling is relatively straightforward, provided the necessary 
technical training is available. Additionally, the user community is robust and 
actively supports new users through forums, helping to resolve technical 
challenges. The model and its associated methods are well-established and widely 
recognized, which also makes it an attractive option for researchers seeking a 
smoother path to publication. These factors collectively contribute to WRF’s 
popularity in air quality research in India.  

The adoption rate of the WRF-Chem system, an extension of the WRF model that 
includes chemical transport modeling, is relatively lower due to the complexity 
involved in localizing emission inventories and the challenges in explaining 
uncertainties and deviations in the model's results, particularly in terms of 
pollutant concentrations and source contributions. These additional layers of 
complexity make it more difficult for researchers to use and validate the model, 
leading to its slower uptake compared to the core WRF model. Similar arguments 
can be applied to adoption of other chemical transport models like CAMx and 
CMAQ.  

While the share of emission inventory papers is significant, a closer look reveals 
that most of them focus on energy and CO2 inventories. This is because CO2 
inventories are relatively easier to establish, as the carbon content of the fuel 
remains constant regardless of the combustion technology used. In contrast, 
inventories for pollutants such as PM2.5, NO2, CO, and VOCs are far more complex, 
as their emissions depend on the specific combustion technologies employed and 
the presence (or absence) of control equipment. These pollutants require detailed 
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knowledge of local industrial practices, fuel types, and technology, making their 
inventories much harder to compile accurately. 

The primary barrier in developing comprehensive emission inventories is the 
availability of reliable activity data and localized emission factors. While energy 
data is often more accessible, obtaining detailed information on specific emission 
sources and their associated technologies presents a challenge. This lack of data 
creates significant uncertainty in localized emissions estimates, which not only 
complicates their use in chemical transport models but also makes it challenging 
to get such studies published. The higher level of ambiguity and the need for 
extensive validation and explanation of assumptions often result in a more 
rigorous peer-review process, further slowing the path to publication for these 
types of inventories. 

We are not suggesting that uncertainties should go unacknowledged or that the 
peer review process should be lenient; rather, we aim to highlight that in LMICs, 
the road to publication can be particularly challenging. The rigorous scrutiny 
associated with high-quality research, while essential, often poses additional 
obstacles for researchers in these regions. Limited access to reliable data and 
resources can exacerbate the difficulties in addressing uncertainties, making it 
harder for LMIC researchers to publish their findings and contribute meaningfully 
to the global discourse on air quality management. 

Chemical transport model adoption in India (and China) 

The review was extended for generic terms comparing the number of journal 
articles published on China’s air quality. In general, the publication rate is 4-6 
times higher than the numbers observed on India’s air quality. 

 
This section explored the adoption rates of chemical transport models to study 
India’s and China’s air quality. The most used models are listed in the table and the 
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rates are low. The same numbers compared to applications in the US and EU show 
ratios higher than 30-50.  

The global models are mostly institutionalized in the US and EU, and any studies 
published on India’s air quality using those models were also conducted by those 
groups. While these models are open, for example, the GEOS-chem system on 
github (https://geoschem.github.io/index.html), is not an easy model to download, 
compile and run. These systems need a lot of computational power and deep 
learning, before such models can be housed in India.  

 

Plume and Gaussian models, such as AERMOD and ISC3, have seen more 
applications in India than in China, primarily because these models are mandated 
for environmental impact clearance certification for industries in India. While 
many of these studies do not pursue the journal publication route, they generate a 
substantial number of application reports within the country. Typically, an 
environmental engineer engaged in air quality modeling is more likely to be 
trained in this suite of models than in the classical regional and global chemical 
transport models. This focus on plume and Gaussian models reflects the practical 
requirements of industry compliance, leading to their widespread use in the 
Indian context. 

We are particularly interested in the applications of classical models such as WRF-
Chem, CAMx, and CMAQ, as they enable us to explore the mathematical, physical, 
and chemical aspects of air pollution at various scales. The barriers to the adoption 
of these models have been discussed in the next section, highlighting the 
challenges researchers face in utilizing these more complex systems effectively. 

Is there a role for reduced complexity models in India?  

GAINS and InMAP are integrated models which can go from emissions to 
concentrations to impacts to scenario analysis via cost-benefit analysis and fall 
into the category of reduced complexity models. Reduced complexity models 
serve as a valuable tool in air quality research by taking outputs from classical 
models and developing a set of matrix functions between emissions and 
concentrations that allow for rapid assessments of air pollution impacts. These 
models bypass the role of running the classical models every time an emission 
scenario is thought of, thus simplifying the modeling process and enabling 
quicker decision-making, which is particularly beneficial for policymakers and 

https://geoschem.github.io/index.html
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practitioners who need timely information. For example, GAINS 
(https://iiasa.ac.at/models-tools-data/gains) provides valuable insights into the 
interplay between air pollution control and greenhouse gas emissions, making it 
an essential tool for addressing both environmental and public health challenges 
in the EU. Confidence in using the GAINS system has been built over two to three 
decades, during which it has received input and enhancements from numerous 
institutions and experts in the field. This collaborative development process has 
led to a robust and reliable model that integrates a wealth of data on emissions, 
costs, and technological options. Similarly, inMAP is making applications in the US 
and China. 

 

However, it is important to note that the development of these reduced 
complexity models still relies on initial runs of classical models to generate the 
necessary data and establish the underlying functions. Additionally, creating 
accurate emission inventories remains a critical step in this process, as the 
effectiveness of reduced complexity models hinges on the quality of the input 
data. Validation is another essential component, ensuring that the simplified 
models produce reliable and meaningful results. Once these foundational steps 
are completed, reduced complexity models can be highly effective in providing 
insights into air quality dynamics.  

While reduced complexity models can effectively support policy dialogues by 
providing rapid assessments and insights, the core research questions related to 
air quality, its chemistry and its impacts can only be fully addressed when the 
barriers to classical modeling are removed. Classical models, with their detailed 
representations of atmospheric processes and emissions, offer the comprehensive 
understanding necessary to tackle complex air pollution issues. Therefore, 
ensuring that researchers have the resources, training, and data needed to 
engage with classical modeling should remain a priority. By strengthening these 
foundational capabilities, the scientific community can produce more robust 
analysis that inform and assess air quality management strategies. 

  

https://iiasa.ac.at/models-tools-data/gains
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5. Operational Barriers to AQM 
 

Most of the published literature and the modeling tools for AQM originate from 
the US and European Union, irrespective of the regions (except for China, in 
general Northeast Asia covering Japan and South Korea). In the context of low and 
middle countries (LMICs), it is important to also list the barriers to AQM. The 
methods and models necessary to support each of the AQM key components are 
open to the air community. Still, the implementation of these systems to their 
fullest extent is lagging in LMICs (Gani et al., 2022).  

Data limitations (Barrier risk – medium) 

This extends across AQM from monitoring to emission inventories. At the start of 
understanding the pollution problem, we require a lot of monitoring data, just to 
know where, when, and how much the pollution is, followed by what (source) is 
contributing to the problem. The monitoring capacity in most of the LMIC’s is 
limited, nascent at best, with a lot of potential to grow. Similar limitations extend 
to the emission inventories, which is a spatial and temporal representation of the 
source intensities and a heat map of all the anthropogenic and natural emission 
activities in the selected regional and urban airshed.  

The barrier risk is listed as medium for three reasons 

(a) Emerging sensor technology is bridging the gap and increasing the pool of 
information to study the ground realities (Morawska et al., 2018; Liang et al., 
2023) 

(b) Emerging science with better algorithms to inverse model satellite 
retrievals is helping with data for regions where there is no ground 
monitoring (Holloway et al., 2021) and 

(c) Global emissions inventories, nudged and reverse engineered with 
information from satellite observations, are better at representing the 
spatial and temporal patterns of various pollutants (as compared what was 
available 5-10 years ago, with known uncertainty) (Crippa et al., 2023; Crippa 
et al., 2024; Thunis et al., 2024).  

For urban scale assessments, localized emission inventories are preferred to 
capture the spatial and temporal patterns. Global and regional scale inventories 
can only provide guidance (and average) assessments over the grids covering the 
urban areas. The barrier risk for urban-scale emission inventories is high. 

Computational space (Barrier risk – low) 

Except for the emissions modeling stage, the meteorological and chemical 
transport modeling stages demand substantial computational power and storage 
capacity. For instance, the global reanalysis data required to run the WRF model 
needs at least 1TB of storage for a single year's data, and WRF outputs can range 
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from 100GB to 1TB, depending on the size of the airshed. The figure below 
illustrates the significant computational requirements involved. These demands 
are similarly high for chemical transport modeling, varying with the complexity of 
the models used. 

 

However, the barriers to entry in the current era of information technology are low 
due to the availability of scalable cloud services with minimal maintenance costs. 
Shifting away from physical servers, which require significant resources such as 
housing, electricity, air conditioning, and technical personnel, has significantly 
reduced the costs of maintaining a computational platform on demand. 

Institutional and training facilities (Barrier risk – high) 

A significant gap exists in institutional housing and training facilities for air quality 
models and environmental data analysis, especially in LMICs. Many institutions 
lack the infrastructure and expertise needed to provide hands-on training with 
the advanced tools (in addition to the computational space) required for 
information management (from emissions to policy interpretations).  

This shortage hampers the development of local capacity, leaving many regions 
reliant on external expertise or struggling to implement effective air quality 
solutions. Without proper training facilities, individuals in academia, government 
agencies, and regulatory bodies find it challenging to develop and apply technical 
skills needed for effective monitoring, modeling, and policy development. 

Moreover, many educational institutions primarily focus on theoretical aspects of 
environmental science and engineering, as part of the curriculums, often 
neglecting practical, operational training on models (like WRF meteorological or 
WRF-chem, CAMx, CMAQ chemical transport models). As a result, graduates may 
have strong academic knowledge but lack the hands-on skills required to set up, 
run, and interpret real-world air quality situations. These disconnects between 
theory and practice create a knowledge gap that limits the ability of local 
professionals to effectively address air quality challenges in their regions. 
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Benchmarking examples of institutional housing of modeling systems: GEOS-chem is a global 
chemical transport modeling system at developed and maintained at Harvard University and 
GAINS is an integrated air quality management system developed and maintained at IIASA, 

Austria. GAINS is also an example of a reduced complexity model, which bypasses the use of a 
chemical transport model to convert a gridded emissions inventory into a gridded 

concentration field which can used for impact and scenario analysis 

 

Additionally, most advanced applications of air quality modeling and analysis are 
concentrated in the United States and Europe, where funding, infrastructure, and 
technical expertise are more readily available. In contrast, LMICs have seen limited 
adoption of these tools, even though they often face some of the most severe air 
pollution challenges (Garland et al., 2024). Bridging this gap requires focused 
efforts to build local capacity through practical training, open information 
platforms, partnerships, and accessible technologies. 

Technical personnel (Barrier risk – high) 

A major challenge in LMICs is the lack of personnel with advanced technical 
training in air quality modeling and environmental management. This includes 
required expertise in computer engineering, geospatial information systems (GIS), 
data analytics, information management, communications, and finally 
meteorology and atmospheric science.  

Even when individuals receive high-level education abroad or through specialized 
programs, many do not return to their home countries or remain engaged in local 
initiatives. This "brain drain" leaves a critical shortage of skilled professionals 
capable of implementing and managing sophisticated air quality systems. To 
address this, there is a pressing need for programs that not only provide technical 
training but also offer financial and operational support to encourage these 
professionals to stay and work locally.  

Creating competitive career opportunities, offering incentives, and building a 
supportive ecosystem can help retain talent and ensure that local expertise is 
available to tackle air pollution challenges where it is needed most. 
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6. Way Forward Recommendations  
 

The potential for air pollution research studies in India is immense, and we aim to 
highlight four key pillars that are essential for advancing this field, particularly in 
supporting the use of chemical transport models.  

1 2 3 4 
Enhancing data 
availability and quality 
is crucial; this includes 
improving emission 
inventories, 
meteorological data, 
and real-time 
monitoring systems to 
provide a solid 
foundation for 
modeling efforts.  

Fostering targeted 
operational training 
programs can equip 
researchers and 
practitioners with the 
necessary skills to 
utilize chemical 
transport models; 
ensuring that they are 
adept at navigating 
the complexities of 
these tools. 

Promoting 
interdisciplinary 
collaboration among 
scientists, 
policymakers, and 
stakeholders will 
facilitate the 
integration of diverse 
expertise, driving 
more holistic 
approaches to air 
quality management. 

Increasing public 
engagement and 
awareness is vital; by 
involving 
communities in 
expanding the 
research efforts and 
encourage collective 
action. 

Enhancing ground monitoring efforts will always be the central focus of air quality 
management, as it provides the critical foundation for regulations, audits, and 
progress reports. Reliable ground monitoring data is essential for understanding 
local air quality dynamics and assessing compliance with air quality standards. 
This data can be obtained through established methods, such as ground-based 
sensors, as well as from advanced satellite feeds that offer broader spatial 
coverage. By integrating both approaches, we can improve the accuracy and 
comprehensiveness of air quality assessments, ultimately supporting more 
modeling studies, regulatory frameworks and evaluations of targeted 
interventions. 

On one side, the need for operational training is crucial and will also remain a 
priority for at least the next 10-20 years, institutionalizing the known chemical 
transport models in India and building a new crop of researchers and 
practitioners, who operate these models without fear of data. 

The other side of the challenge is building localized emission inventories and 
consolidation of these inventories at the national and urban scales. At the time of 
this working paper, India still does not host an official consolidated emissions 
inventory to support air pollution modeling at any scale (national and urban 
airsheds). Here are some example intercomparison studies, which led to 
consolidation of inventories, establishing a baseline and modeling framework for 
the future modeling groups to follow. 

1. Atmospheric Model Intercomparison Project (AMIP): https://www.wcrp-
climate.org/modelling-wgcm-mip-catalogue/modelling-wgcm-mips-2/240-
modelling-wgcm-catalogue-amip This program was initiated in the 1990s 

https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/modelling-wgcm-mips-2/240-modelling-wgcm-catalogue-amip
https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/modelling-wgcm-mips-2/240-modelling-wgcm-catalogue-amip
https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/modelling-wgcm-mips-2/240-modelling-wgcm-catalogue-amip
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to intercompare atmospheric models for use in climate research, including 
models that simulate air quality and atmospheric chemistry. 

2. The Air Quality Model Evaluation International Initiative (AQMEII): 
https://joint-research-centre.ec.europa.eu/scientific-tools-
databases/ensemble-atmospheric-chemistry-transport-and-dispersion-
models/ensemble-case-studies/ensemble-air-quality-model-evaluation-
international-initiative-aqmeii_en This program was initiated in the early 
2000s to intercompare air quality models to improve their accuracy and 
provide better information for policymakers and the public. 

3. The Hemispheric Transport of Air Pollution (HTAP): https://htap.org This 
program was initiated in the early 2000s to intercompare air quality models 
to improve understanding of the long-range transport of air pollutants 
across different regions of the world and build an ensemble emissions 
inventory for all the models. 

4. The Model Inter-Comparison Study for Asia (MICS-Asia): 
https://www.acap.asia/en/research-main/mics-asia This program was 
initiated in the 2010s to intercompare emission inventories and air quality 
models specifically for the Asian region, where air pollution is a major public 
health concern. 

For India and the Indian Subcontinent, an emissions and pollution modeling 
intercomparison exercise is due. 

  

https://joint-research-centre.ec.europa.eu/scientific-tools-databases/ensemble-atmospheric-chemistry-transport-and-dispersion-models/ensemble-case-studies/ensemble-air-quality-model-evaluation-international-initiative-aqmeii_en
https://joint-research-centre.ec.europa.eu/scientific-tools-databases/ensemble-atmospheric-chemistry-transport-and-dispersion-models/ensemble-case-studies/ensemble-air-quality-model-evaluation-international-initiative-aqmeii_en
https://joint-research-centre.ec.europa.eu/scientific-tools-databases/ensemble-atmospheric-chemistry-transport-and-dispersion-models/ensemble-case-studies/ensemble-air-quality-model-evaluation-international-initiative-aqmeii_en
https://joint-research-centre.ec.europa.eu/scientific-tools-databases/ensemble-atmospheric-chemistry-transport-and-dispersion-models/ensemble-case-studies/ensemble-air-quality-model-evaluation-international-initiative-aqmeii_en
https://htap.org/
https://www.acap.asia/en/research-main/mics-asia
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