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Abstract Cities in South and Southeast Asia are developing rapidly without routine, up‐to‐date knowledge
of air pollutant precursor emissions. This data deficit can potentially be addressed for nitrogen oxides (NOx) by
deriving city NOx emissions from satellite observations of nitrogen dioxide (NO2) sampled under windy
conditions. NO2 plumes of isolated cities are aligned along a consistent wind‐rotated direction and a best‐fit
Gaussian is applied to estimate emissions. This approach currently relies on non‐standardized choice of upwind,
downwind, and across‐wind distances from the city center, resulting in fits that often fail or yield non‐physical
parameters. Here, we propose an automated approach that defines many combinations of distances yielding 54
distinct sampling boxes that we test with TROPOspheric Monitoring Instrument (TROPOMI) NO2 observations
over 19 isolated cities in South and Southeast Asia. Our approach is efficient, uses open‐source software, is
adaptable to many cities, standardizes and eliminates sensitivity to sampling box choice, increases success of
deriving emissions from 40% to 60%with one sampling box to 100% (all 19 cities) with 54, and yields emissions
consistent with the current manual approach. We estimate that the annual emissions range from 15 ± 5 mol s− 1

for Bangalore (India) to 125± 41mol s− 1 for Dhaka (Bangladesh). With enhanced success of deriving top‐down
emissions, we find support from comparison to past studies and inventory estimates that top‐down emissions
may be biased, as the method does not adequately account for spatial and seasonal variability in NOx

photochemistry. Further methodological development is needed for enhanced accuracy and use to derive sub‐
annual emissions.

Plain Language Summary Cities are a large source of nitrogen oxides (NOx) that go on to form
many types of air pollutants of harm to human health. City NOx emissions estimated with observations from
space‐based instruments are vital in regions that lack access to up‐to‐date, locally developed inventories.
Success of obtaining satellite‐derived emissions hinges on user selection of a sampling box around each city
center. Here we present an automated, efficient method that uses many (54) boxes. When tested on 19 cities in
South and Southeast Asia, annual NOx emissions are obtained for all 19 cities compared to about half the
selected cities when using a single sampling box. With this updated approach, we estimate total NOx emissions
in 2019 that range from 22 kilotonnes for Bangalore to almost 10‐times more (181 kilotonnes) for Dhaka. The
greater success of our updated approach also helps us identify that the accuracy of emissions derivation from
satellite observations should be further improved by accounting for the influence of spatial and seasonal
variability in NOx photochemistry.

1. Introduction
Nitrogen oxides (NOx ≡ NO2 + NO) react to form particulate nitrate and tropospheric ozone and deposit to
sensitive habitats (Luo et al., 2019; Sillman, 1999), thus degrading air quality, altering climate, and adversely
affecting human health and the environment (Grulke & Heath, 2020; Lelieveld et al., 2015; Marais et al., 2023;
Yue et al., 2017). Controls targeting anthropogenic sources of NOx have been extensively implemented in cities in
Europe, the US and China (Curier et al., 2014; de Foy et al., 2016; Silvern et al., 2019). In cities in other parts of
the world, particularly South and Southeast Asia, NOx is increasing rapidly due to fast economic development and
limited or absent air quality policies (Vohra et al., 2021, 2022). Vohra et al. (2022) used 14 years of satellite
observations of NO2 from the Ozone Monitoring Instrument (OMI) to infer increases of ∼1–14% a− 1 in surface
NO2 pollution in almost all rapidly developing large cities in South and Southeast Asia. Only in Jakarta did NO2

decline due to emission controls applied to vehicles (Vohra et al., 2022). Population projections suggest that, by
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2100, one‐fifth of the world's most populous cities will be in Southeast Asia (Hoornweg & Pope, 2017),
necessitating reliable and up‐to‐date NOx emissions estimates for assessing the impact of this growth on urban air
quality and for informing air quality policies.

Bottom‐up inventories provide estimates of anthropogenic NOx emissions, but publicly available versions for
South and Southeast Asia do not adequately represent contemporary local conditions, as these are derived using
outdated activity data, are resource‐intensive to produce so lag the present day, have only recently been updated to
achieve spatial resolutions that resolve cities, and the activity and emission factor data needed to compile the
inventories are lacking for many countries (Kurokawa & Ohara, 2020). The two most used bottom‐up inventories
for these regions are the Regional Emission inventory in Asia (REAS) (Kurokawa & Ohara, 2020) and the in-
ventory known as MIX, a mosaic of REAS and other regional inventories (Li et al., 2017). REAS and the first
version of MIX (MIXv1) are at ∼25 km resolution, MIXv1 only covers 2 years of data, and the most recent years
are 2015 for REAS and 2010 for MIXv1. A new version of MIX (MIXv2) recently developed covers more years
(2010–2017) and better resolves (∼10 km resolution) emissions than MIXv1 (Li et al., 2024), though most widely
used global inventories, such as the Community Emissions Data System (CEDSGBD‐MAPS) (McDuffie
et al., 2020) and Hemispheric Transport of Air Pollution (HTAP) (Crippa et al., 2023), still rely on REAS and
MIXv1.

Independent and contemporary estimates of city NOx emissions can be derived with satellite observations of
tropospheric NO2 vertical column densities (VCDs) without the need to simulate computationally intensive
models to convert VCDs to emissions. A method first proposed by Beirle et al. (2011) involves selecting isolated
cities and treating these as large point sources of NOx. In this approach, individual satellite pixels within a target
domain centered on a city center were split into eight major wind directions to resolve the city plume in each
direction. A model was then fit to the plume to account for its Gaussian shape and for exponential decay of NOx.
This fit, referred to as an Exponential Modified Gaussian (EMG), yields parameters that are then used to estimate
NOx emissions. It also yields an effective lifetime of NOx for the city plume that is dominated by dispersion for
the windy conditions sampled. As dispersion dominates, the derived lifetime is much shorter than the chemical
lifetime of NOx that includes conversion to nitric acid (HNO3) or organic nitrates (de Foy et al., 2014; Laughner &
Cohen, 2019) and, to a lesser extent, dry deposition of NO2 (Zhang et al., 2012). Beirle et al. (2011) used OMI
observations of NO2 to derive NOx emissions for eight global megacities. The Beirle et al. (2011) approach
required many (four) years of OMI data to achieve distinct plumes in each wind direction.

Valin et al. (2013) expanded on the approach developed by Beirle et al. (2011) by demonstrating that all
satellite data can instead be aligned along a single upwind‐downwind direction relative to the city center. This
approach reduced the number of observations needed to distribute the data by wind direction and so extended
application to a greater number of geographically isolated cities over shorter sampling periods. Wind rotation
of OMI observations and the EMG fit have since been used to calculate city NOx emissions predominantly in
the US (de Foy et al., 2014; Goldberg, Lu, Oda, et al., 2019; Lu et al., 2015) and for select cities worldwide
(Goldberg et al., 2021). Following the 2017 launch of the higher spatial resolution TROPOspheric Monitoring
Instrument (TROPOMI), the wind rotation, EMG fit, and related approaches have been extended to smaller
isolated cities and shorter sampling periods than was possible with OMI. Applications include cities in western
Europe (Lorente et al., 2019; Pommier, 2023; Pope et al., 2022), China (Wu et al., 2021), the US (Goldberg,
Lu, Streets, et al., 2019), and worldwide (Lange et al., 2022), as well as investigating changes in NOx

emissions due to COVID‐19 lockdown measures in the New York Metropolitan Area (Tzortziou et al., 2022)
and in select cities in India, Argentina, and Spain (Lange et al., 2022). So far, the wind rotation and EMG fit
has only been applied to 5–13 cities in South and Southeast Asia as part of global studies (Goldberg
et al., 2021; Lange et al., 2022).

There has been substantial development in the use of satellite observations to derive emissions of isolated hotspots
which can improve the EMG fit with wind rotation, such as automated hotspot detection and selection (Beirle
et al., 2021; McLinden et al., 2016). Still, users need to define a sampling box around the city that effectively
captures the wind rotated plume, requiring trial and error selection of a single suitable sampling box (Laughner &
Cohen, 2019) that typically varies with city size and plume length (Goldberg, Lu, Oda, et al., 2019; Lange
et al., 2022; Lu et al., 2015). Even after selecting a suitable sampling box, the EMG fit is often poor or yields non‐
physical best‐fit parameters (Laughner & Cohen, 2019), decreasing the likelihood of deriving top‐down
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emissions. Selecting appropriate city‐specific boxes for the wide‐ranging city sizes in South and Southeast Asia is
also time consuming and not standardized.

Here we develop a near‐automated and efficient EMG fitting routine for deriving annual city NOx emissions,
demonstrate the utility of this automation by applying it to TROPOMI NO2 observations over isolated cities in
South and Southeast Asia with wide‐ranging city sizes, compare our top‐down emissions to past studies and a
global bottom‐up inventory, and exploit the greater success of our updated sampling to identify opportunities to
further develop and improve the EMG fit approach.

2. Materials and Methods
2.1. TROPOMI NO2 and City Selection

We use Level 2 TROPOMI NO2 tropospheric column VCDs for 2019 from the Sentinel‐5P Products Algorithm
Laboratory (S5P‐PAL) portal (https://data‐portal.s5p‐pal.com/; last acquired 30 January 2022). These data have
been retrieved with a consistent algorithm (version 02.03.01) that corrects for a low bias in NO2 over polluted
scenes (Eskes et al., 2021). TROPOMI achieves daily global coverage with a swath width of 2,600 km, an equator
crossing time of 13:30 local solar time (LST), and a nadir pixel resolution that increased on 5 August 2019 from
7 km × 3.5 km to 5.5 km × 3.5 km. We use cloud‐free, high‐quality data identified with a quality flag ≥0.75 (van
Geffen et al., 2021).

To identify isolated cities appropriate for top‐down estimate of NOx emissions, we first oversample TROPOMI
NO2 to obtain high‐resolution gridded annual means (0.05° × 0.05°; ∼6 km latitude × ∼5 km longitude) by
weighting areas of overlap between the satellite pixels and cells on a fixed latitude‐longitude grid using tessel-
lation (Sun et al., 2018). We use the resultant gridded TROPOMI NO2 shown in Figure 1 to manually select 19
cities that are isolated hotspots. The 19 selected cities are Karachi, Islamabad, and Lahore in Pakistan; Kabul in
Afghanistan; Ahmedabad, Mumbai, Delhi, Bangalore, Chennai, and Kolkata in India; Colombo in Sri Lanka;
Dhaka in Bangladesh; Yangon in Myanmar; Bangkok in Thailand; Kuala Lumpur in Malaysia; the sovereign city
Singapore; Ho Chi Minh City in Vietnam; Jakarta in Indonesia; and Manila in the Philippines. The other
prominent enhancements in Figure 1 we do not select are either not cities, such as the coal‐fired power plants
concentrated in eastern India, or are not isolated, such as the cluster of cities (Hanoi, Haiphong and Nam Dinh) in
northern Vietnam.

Figure 1. Annual mean TROPOMI tropospheric NO2 vertical column densities over South and Southeast Asia in 2019. Maps
show South (left) and Southeast (right) Asia TROPOMI NO2 oversampled to 0.05° × 0.05°. The 19 selected cities, numbered
from east to west, are Karachi (1), Islamabad (5), and Lahore (6) in Pakistan; Kabul (2) in Afghanistan; Ahmedabad (3),
Mumbai (4), Delhi (7), Bangalore (8), Chennai (10), and Kolkata (11) in India; Colombo (9) in Sri Lanka; Dhaka (12) in
Bangladesh; Yangon (13) in Myanmar; Bangkok (14) in Thailand; Kuala Lumpur (15) in Malaysia; the sovereign city
Singapore (16); Ho Chi Minh City (17) in Vietnam; Jakarta (18) in Indonesia; and Manila in the Philippines (19).
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2.2. Wind Rotation and EMG Fit

Figure 2 illustrates the major steps involved in the wind rotation and EMG fit to derive annual NOx emissions for
Singapore. The wind fields we use to calculate wind direction and speed to retain TROPOMI NO2 observations
under windy conditions are the fifth generation European ReAnalysis (ERA5) 3D hourly u and v wind compo-
nents (https://cds.climate.copernicus.eu/cdsapp#!/home; last acquired 18 March 2022) provided at 0.25° × 0.25°

Figure 2. Illustration of major steps in the wind rotation and Exponential Modified Gaussian (EMG) fit to derive annual
nitrogen oxides (NOx) emissions for Singapore. The main steps in each panel are wind rotate and grid windy scene
TROPOMI NO2 pixels to 0.05° × 0.05° (a), fill data gaps (b), and fit the EMG function (Equation 1) (solid lines) to observed
line densities (filled circles) (c). The 8 gray grid squares in panel (a) indicate missing data. In panel (b), black rectangles show
the extent of the largest (1° upwind, 2.0° downwind, and 1.0° across wind) and smallest (0.5° upwind, downwind and across
wind) sampling boxes, gray lines demarcate sampling box edges, dashed lines in the smallest box show the 0.05° increments
used to calculate the line densities in panel (c), and colored arrows correspond to the across‐wind integration lengths in panel
(c). All 54 successful EMG fits, 18 lines for each of the 3 across‐wind lengths, are shown in panel (c). Values in panel (c) give
the mean and standard deviation of NOx emissions (Equation 3) for all 54 fits and for the 18 fits for each of the 3 across‐wind
lengths, the effective NOx lifetime for all fits (Equation 2), and the sampling box mean ERA5 wind speed. The goodness‐of‐
fit (R2) is ≥0.99 for all fits in panel (c).
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resolution. At each TROPOMI NO2 pixel, we compute collocated mean ERA5 wind speeds and directions 30 min
around 13:30 LST, the TROPOMI overpass time, in the lowest 5 layers (≥900 hPa) to capture dispersion of
mixed‐layer near‐surface NO2 plumes. Within a 4° × 4° domain around each city center, we isolate TROPOMI
pixels with coincident wind speeds >2 m s− 1, the threshold typically used for windy conditions (Beirle
et al., 2011; Pope et al., 2022). We rotate each TROPOMI NO2 pixel by the angle of its wind direction, preserving
the distance of the pixel from the city center. Wind rotation aligns all pixels along the same “upwind‐downwind”
direction that in our work is from north to south (Figure 2a) and displaces any nearby sources so that these appear
as rings a fixed distance from the city center (Fioletov et al., 2016). Examples of these include the two hotspots,
Lahore and Delhi (Figure 1), that have small NO2 enhancements north of the city. As a result of this displacement
by wind rotation, these hotspots are not incorporated in the city plume. After wind rotating all pixels in a year, we
grid pixels onto a uniform 0.05° × 0.05° grid using simple point‐in‐box averaging (Figure 2a) and fill empty grid
cells (gray squares in Figure 2a) using nearest‐neighbor interpolation to reduce low biases in the steps that follow.
For most cities, there are very few empty grid cells (8 for Singapore in Figure 2a) and the empty grid cells
typically occur at the outer edges of the domain.

Next, line densities or NO2 integrated along the across‐wind direction are calculated by summing grid cells in
Figure 2b in the across‐wind (east‐to‐west) direction in 0.05° upwind‐downwind (north‐to‐south) increments. In
the standard approach, a single box smaller than the 4° × 4° domain is used, defined by the distance upwind,
downwind, and across‐wind of the city center. Instead of using a single box, we define multiple boxes that
encompass the range of sizes typically used in past studies (Goldberg et al., 2021; Lange et al., 2022; Laughner &
Cohen, 2019). These, defined as degree distances from the city center, are 0.5°, 0.75°, and 1° upwind, 0.5°, 0.75°,
1.0°, 1.25°, 1.5°, 1.75°, 2.0° downwind, and 0.5°, 0.75°, and 1.0° across‐wind. This combination of 3 upwind, 7
downwind and 3 across‐wind lengths yields 63 boxes and associated line densities, decreasing to 54 to satisfy the
requirement that the distance downwind of the city center be ≥ the distance upwind to encompass the downwind
extent of the city plume. The sizes of the smallest and largest boxes, the extent of all other sampling boxes, and the
across‐wind 0.05° increments summed to obtain line densities in the smallest box are shown in Figure 2b.

The EMG model we use to fit to the observed 1D line densities in each sampling box is the Laughner and
Cohen (2019) formulation:

F( x
⃒
⃒a,x0,μx,σx,B) =

a
2x0

exp(
μx
x0
+

σ2
x

2x20
−

x
x0
) erfc(−

1
̅̅̅
2

√ [
x − μx

σx
−

σx

x0
]) + B (1)

where x is the distance of each line density upwind and downwind of the city center (Figure 2c) and a, x0, μx, σx

and B are best‐fit parameters. Of these, a is total NO2 in the plume (in moles), x0 is the e‐folding distance or length
scale of NO2 decay (in km), μx is the location of the apparent source relative to the city center (in km) or upwind
edge of the plume that in Figure 2c is located ∼5 km upwind or north of the city center, σx is the Gaussian
smoothing length scale (in km) that is ∼40% of the Full Width at Half Maximum (FWHM/2.355), and B is
background NO2 (in mol m− 1). In the rare instances there are small NO2 enhancements nearby target hotspots
(Delhi and Lahore; Figure 1), displacement of these by wind rotating the city plume limits the contribution of
these enhancements to the background, B.

We use initial guesses for the best‐fit parameters in Equation 1 that are similar to those used by Laughner and
Cohen (2019) for US cities, but our fitting procedure differs. Laughner and Cohen (2019) used a non‐linear
interior point minimization algorithm (the fmincon function in MATLAB) to optimize model parameters.
Instead, we perform the fit with the open source scipy.optimize.curve_fit module from SciPy Python package
version 1.7.3, as is used by Pommier (2023) for hotspots in the UK. Laughner and Cohen (2019) performed 10
iterative fits and selected the fit with the smallest residuals. We instead iterate on the fit until the difference in
fitting parameters between the current and previous iteration is negligible (<0.001%) for at most 10 iterations. Fit
convergence is usually achieved after three iterations, resulting in a fast fitting routine. We only retain good‐
quality fits, identified with goodness‐of‐fits (R2) > 0.8, as in Laughner and Cohen (2019). We further screen
for physically implausible best‐fit parameters using criteria similar to Laughner and Cohen (2019): a is positive,
x0 is at least 1.6 km (approximately 1/e of the grid resolution), μx is within the sampling box, the emission width is
less than the e‐folding distance (σx < x0), background NO2 is positive and less than the maximum line density
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value, the e‐folding distance occurs between the plume center and the edge of the sampling box, and that 1.5 times
μx is less than the downwind length.

The Singapore example in Figure 2 is an ideal city, as all 54 EMG fits succeed. Figure S1 in Supporting In-
formation S1 shows the wind rotated plume, line densities and EMG fits for an example city, Bangalore, with 15
failed fits, necessitating as many as 54 sampling boxes. The first criteria these fits fail to satisfy are R2 > 0.8 for 14
fits and a > 0 mol for 1 of the fits. Figure 2c and Figure S1 in Supporting Information S1 show that the observed
line densities are most sensitive to the across‐wind length, as this determines the amount of NO2 summed to yield
each line density. All sampling boxes encompass the Bangalore plume, whereas sampling boxes with a downwind
length >1° are required to encompass the whole Singapore plume.

The successful EMG fits are used to calculate effective NOx lifetimes (τNOx
; reported in h) and midday NOx

emissions (ENOx
; in mol s− 1):

τNOx
=

x0
ω

(2)

ENOx
= γ ×

a
τNOx

(3)

where ω is the sampling box mean wind speed (in m s− 1) and γ is the city mean midday molar ratio of [NOx]/
[NO2] required to convert moles NO2 to moles NOx. The up to 54 individual estimates of τNOx

and ENOx
are

averaged to obtain values for each city.

We use the same [NOx]/[NO2] = 1.32 value as Beirle et al. (2011) and subsequent studies to represent rapid
cycling between NO and NO2. Liu et al. (2022) determined with synthetic experiments that city NOx emissions
are relatively unaffected by variability in [NOx]/[NO2], but that study was for US cities. Surface measurements
aid in determining suitability of [NOx]/[NO2] = 1.32, but these are limited to cities in India and have data quality
issues (Vohra et al., 2021). Instead, we use the GEOS‐Chem model to assess suitability of the 1.32 value. We
simulate the model in 2019 and sample the lowest model layer around the TROPOMI overpass time. We use
output from a coarse and finer resolution version of GEOS‐Chem to also test sensitivity of this ratio to model
resolution, especially given many of these cities are coastal (Figure 1). We use the classical configuration of the
model that operates on a single computational node, called GEOS‐Chem Classic (GCClassic), and the high‐
performance model configuration (GCHP) that is parallelized across multiple computational nodes to enable
finer resolution global simulations (Eastham et al., 2018). GCClassic is version 13.3.4 (https://doi.org/10.5281/
zenodo.5764874) run on a fixed 2° × 2.5° global grid and GCHP is version 13.4.1 (https://doi.org/10.5281/
zenodo.6564711) run on a C360 global grid (∼25 km × ∼25 km), the finest global GEOS‐Chem grid resolution
full‐year simulation achieved to date. GCClassic and GCHP use the same vertical grid and chemical mechanism.
For GCClassic, grid squares that overlap with each city are sampled, whereas for GCHP, we use city sampling
extents determined from a combination of administrative and geographic boundary shapefiles and Google Maps
(Figure S2 in Supporting Information S1). Midday sampling is at 12:00 to 15:00 LST from GCClassic and 13:00
to 14:00 LST from GCHP. At midday, NOx is in photochemical steady state, so the relative abundance of NO and
NO2 is insensitive to differences in these sampling windows (Potts et al., 2021).

We calculate uncertainties in the NOx emissions by adding individual errors in quadrature. These include best‐fit
parameters x0 and a, sampling box mean wind speed ω, the TROPOMI NO2 observations, and [NOx]/[NO2]. We
use the relative standard deviation from all successful EMG fits to calculate city‐specific errors in x0 and a. For ω,
we consider errors due to the choice of spatial and temporal sampling and the threshold used for windy conditions.
We use the Beirle et al. (2011) estimated 10% error in temporal sampling choice and 5% error due to vertical
sampling choice. We conduct our own tests of the sensitivity to wind speed threshold and spatial sampling choice.
For [NOx]/[NO2] we assess whether the 10% error attributed to this variable by Beirle et al. (2011) is appropriate
by quantifying the percent deviation of GCClassic and GCHP [NOx]/[NO2] from 1.32. Beirle et al. (2011) applied
a 30% error to OMI that is also appropriate for TROPOMI. Even though uncertainties in TROPOMI slant columns
(NO2 along the viewing path) are much less than those from OMI (van Geffen et al., 2020), the air mass factor
used to convert slant columns to VCDs remains the largest contributor to errors in NO2 VCDs and is similar for
OMI and TROPOMI (van Geffen et al., 2021).
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We benchmark our approach by comparing our NOx emissions to top‐down NOx emissions obtained using a
single sampling box. The studies we consider are those using satellite observations for the same time period as
ours. These include multiyear (2017–2019) mean emissions from Goldberg et al. (2021) obtained using the OMI
sensor and emissions from Lange et al. (2022) obtained with select days of TROPOMI data from 2018 to 2020.

2.3. Bottom‐Up Anthropogenic Emissions

We compare our top‐down estimates to anthropogenic NOx emissions from the widely used bottom‐up HTAP
inventory version 3 (HTAP_v3) (Crippa et al., 2023). HTAP_v3 downscales the REAS 0.25°× 0.25° emissions to
0.1° × 0.1° using sector‐specific spatial fields (https://www.cmascenter.org/sa‐tools/; last accessed 2 July 2024)
to resolve emissions from underlying urban activities like residential combustion and road traffic. The most recent
HTAP_v3 emission year is 2018, achieved by extending emissions from the regional REAS inventory ending in
2015 to the year 2018 with trends from the Emissions Database for Global Atmospheric Research (EDGAR)
inventory. The same sampling boundaries as GCHP are used (Section 2.2; Figure S2 in Supporting Informa-
tion S1). The HTAP_v3 NOx emissions include contributions from aviation, transport (road, rail, pipeline, inland
waters), shipping, energy, industry, and residential sectors.

Cities targeted can be influenced by non‐anthropogenic NOx sources, such as open burning of biomass (Marvin
et al., 2021) and natural sources such as soils (Weng et al., 2020) and lightning (Miyazaki et al., 2014). We assess
suitability of comparing our top‐down emissions to anthropogenic bottom‐up emissions only by determining the
percent contribution of anthropogenic emissions to total NOx emissions. To do this, we simulate total NOx

emissions with the Harmonized Emissions Component (HEMCO) standalone model version 3.0.0 (https://zen-
odo.org/records/4984639; last accessed 20 March 2022) (Lin et al., 2021) and sample the same spatial extent as
GCHP and HTAP_v3 (Figure S2 in Supporting Information S1). HEMCO is run at a spatial resolution of
0.25° × 0.3125° (∼28 km latitude × ∼33 km longitude). HEMCO calculates open biomass burning emissions
using the Global Fire Emissions Database with small fires (GFED4s) inventory (Randerson et al., 2017) and reads
in and processes lightning and soil NOx from offline emissions at the same resolution as HEMCO (Murray
et al., 2012; Weng et al., 2020).

Bottom‐up emissions from HTAP_v3 are 24‐hr means, whereas top‐down estimates derived using TROPOMI are
representative of midday emissions. Goldberg et al. (2021) multiplied satellite‐derived midday NOx emissions by
0.77 to convert midday top‐down NOx emissions to 24‐hr means for comparison to bottom‐up inventories. This
value was inferred from bottom‐up emissions estimates for the Netherlands, so may not be suitable for the
selected cities in South and Southeast Asia. The hourly scaling factors used by HEMCO for the chosen cities
range from 0.70 to 1.16. These are for the year 2000 and are extrapolations of values for conditions in Europe, so
may not be suitable for the year and cities targeted in this study. Given this, we do not scale top‐down emissions
and instead discuss whether differences in averaging times contribute to discrepancies between top‐down and
bottom‐up emissions estimates.

3. Results and Discussion
3.1. Wind Rotation and EMG Fit Metrics

The enhancement apparent due north of Lahore (city (6) in Figure 1) is deflected by wind rotation as an evenly
distributed ring ∼200 km away from the city center, causing a small second peak that only influences boxes with
the longest downwind length of 2°. The emissions estimate for the boxes with the longest downwind lengths is
35.3± 1.8 mol s− 1, just 3% more than the mean of all successful fits (34.2± 1.6 mol s− 1). The enhancement north
of Delhi (city (7) in Figure 1) causes multiple uneven rings, but most of these are deflected northeast of the city
beyond the sampling boxes.

The line densities generated (shown in Figure 2c for Singapore) are obtained by summing NO2 over ∼100 km for
the blue lines, ∼150 km for the orange lines, and ∼200 km for the green lines. As is evident in Figure 2c, an
increase in across‐wind length causes a systematic increase in the line densities. The background, B, almost
doubles, from 1.7 mol m− 1 for the ±0.5° across‐wind length to 3.2 mol m− 1 for ±1.5°, but the total NO2 in the
plume, a, is relatively similar. Values of a for Singapore are 66.4 ± 1.7 mol for ±0.5° across‐wind fits,
74.7 ± 2.6 mol for ±1°, and 78.7 ± 3.5 mol for ±1.5°. NOx emissions increase by just 6% from 108 mol s− 1 at
±0.5° to 115 mol s− 1 at ±1.5°.
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Isolating satellite pixels coincident with windy conditions (>2 m s− 1)
removes 8%–34% of all 2019 quality‐ and cloud‐screened TROPOMI NO2

pixels for most cities in Figure 1. Cities with greater data loss are Lahore (43%
data loss), Kabul (58%) and Islamabad (63%). No spatial data gap filling
(Section 2.2, Figure 2) is needed within the boxes sampled, due to the high
sampling frequency of TROPOMI. If only a single domain size is selected,
annual EMG fits meet all criteria for success for 7 to 12 of the 19 cities in
Figure 1, depending on the sampling box chosen. Using our extended method,
we successfully derive annual NOx emissions for all 19 cities, due to the
enhanced probability of obtaining at least one successful EMG fit.

Figure 3 shows the number of successful EMG fits (orange bars) range from 3
(Kabul) to all 54 (Singapore). Singapore, Dhaka, Jakarta, Karachi, Manila,
and Mumbai are least impacted by sampling box choice. The 4 cities, Kabul,
Islamabad, Kolkata and Bangkok, with <30 fits are most likely to fail if only a
single sampling box is used. For all retained EMG fits, differences between
observed and fitted NO2 line densities, the fit residuals, are always negligible.
The most common causes for a failed EMG fit rank as: R2 ≤ 0.8 (24%),
emission width > e‐folding distance (19%), total plume NO2 (a in Equa-
tion 1) < 0 (13%), and e‐folding distance > the downwind length of the
sampling box (12%).

We also test sensitivity of top‐down NOx emissions to the choice of wind
speed threshold and horizontal sampling extent to attribute an error to these.
For this, we apply a stricter wind speed threshold of 3 m s− 1 and test the
difference in NOx emissions if instead of filtering for windy conditions using
pixel‐mean wind fields, we calculate a sampling‐box mean wind speed to
filter for windy conditions as in Goldberg, Lu, Oda, et al. (2019). We apply
these conditions to a mid‐sized sampling box of 0.75° upwind, 1.5° down-
wind, and ±0.75° across‐wind. Variability in NOx emissions for cities with
successful EMG fits for all 4 wind sampling conditions is at most 10% (Figure
S3 in Supporting Information S1). Given these results, we attribute a 10%
error to the choice of horizontal sampling and to the wind speed threshold.

GCClassic (coarse resolution) annual mean [NOx]/[NO2] for the target cities
ranges from 1.25 (Dhaka) to 1.41 (Kabul). The range in ratios from GCHP

(finer resolution) is wider at 1.24 (Ahmedabad) to 1.64 (Kolkata). The difference in ratios between the coarse and
fine resolution models is typically ±10%, except for a few cities with ratios from the fine resolution model that
exceed the coarse resolution model by 14% for Singapore, 16% for Lahore, 23% for Dhaka, and 23% for Kolkata.
This is because the fine resolution model better resolves the city plume that includes a greater proportion of NOx

as NO from fresh emission sources. As the difference between the model city ratios and the 1.32 value is±10% for
most cities, we use the same 10% error for [NOx]/[NO2] as Beirle et al. (2011).

3.2. Top‐Down NOx Emissions

Green bars in Figure 3 show the mean annual top‐down NOx emissions for all cities. These range from
∼15 mol s− 1 for Bangalore to∼125 mol s− 1 for Dhaka. The range in the total mass of NOx emitted for these cities,
assuming the midday emission rate is reasonably representative of the 24‐hr emission rate, is 22–181 Gg NOx as
NO2. Emissions for most cities are <50 mol s− 1 (<73 Gg NOx as NO2 a

− 1). Cities with emissions between 50 and
100 mol s− 1 (73–145 Gg NOx as NO2 a

− 1) include Karachi, Delhi, and Jakarta and >100 mol s− 1 (>145 Gg NOx

as NO2 a
− 1) include Bangkok, Singapore, and Dhaka. Emission rates for Bangkok, Dhaka and Singapore are

comparable to the range of top‐down emissions estimated for large, polluted cities in China also obtained with the
EMG approach (Wu et al., 2021). The effective lifetimes for the cities in Figure 1 (shown in Figure S4 in
Supporting Information S1) range from 1.2 hr for Colombo to 6.2 hr for Kuala Lumpur. Variability in effective
lifetimes depends most strongly on the downwind extent of the plume. The Pearson's correlation coefficient, R,
between city mean effective lifetimes and x0 (decay length scale) is 0.89.

Figure 3. Successful Exponential Modified Gaussian (EMG) fits and top‐
down nitrogen oxides emissions for the cities targeted in this study. Bars are
emissions (green) and the corresponding number of successful fits (orange).
Black error lines are the EMG fit error for each city obtained as the standard
deviation of all successful fits. The orange dashed line at 54 indicates the
maximum possible EMG fits. Emissions multiplied by ∼1.45 yields
emissions in Gg NO2 a

− 1.
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For most of the target cities, the variability in NOx emissions for individual successful EMG fits is small (black
error lines in Figure 3). Relative standard deviations of annual NOx emissions range from just 2% for Bangalore to
34% for Kuala Lumpur and are <15% for most (16 out of 19) cities. This variability is far less than the equivalent
Gaussian fit uncertainty of 10%–50% estimated by Beirle et al. (2011) for a single sampling box. The relatively
large variability in Kuala Lumpur NOx emissions is because the smaller EMG sampling boxes do not fully
encompass the elongated wind rotated city NO2 plume, causing a lower estimate in NOx emissions for the smaller
boxes compared to the larger boxes sampled. The effect of this is dampened by the almost 30 successful fits used
to obtain mean NOx emissions for this city. The relative standard deviations of the effective NOx lifetimes (Figure
S4 in Supporting Information S1) range from 6% for Bangalore to 37% for Chennai. The relative standard de-
viations of other parameters are <6% for wind speeds (Figure S5 in Supporting Information S1), 5% (Bangalore)
to 38% (Chennai) for x0, and 4% (Kabul) to 41% (Kuala Lumpur) for a.

The overall uncertainty in annual NOx emissions we obtain by adding the fit errors (error lines in Figure 3) and all
other error contributions in quadrature, as detailed in Section 2.2, ranges from 32% for Kabul to 59% for Kuala
Lumpur. Mean emissions and total errors for all cities are given in Table S1 in Supporting Information S1. The
TROPOMI NO2 VCDs make the largest contribution to the overall uncertainty. The higher‐end of our uncertainty
estimates is similar to the typical ∼50% uncertainty reported in past studies (Beirle et al., 2011; Goldberg
et al., 2021; Verstraeten et al., 2018).

The accuracy of the top‐down emissions in Figure 3 should ideally be determined by comparison to true emissions
from reliable ground‐based observations, but these are non‐existent. An alternate approach is to conduct synthetic
experiments with GEOS‐Chem to assess the accuracy of the wind rotation and EMGmethod, but the model is too
coarse to resolve the city plume shape shown in Figure 2c, affecting the best‐fit parameter estimates. Given these
limitations, we instead evaluate consistency with city NOx emissions estimates from past studies that used wind
rotation and the EMG fit and from the HTAP inventory. We use our overall uncertainties (Table S1 in Supporting
Information S1) in the comparison to past studies and HTAP in the sections that follow.

3.3. Comparison to Top‐Down Estimates From Past Studies

To assess our approach, we compare in Figure 4 our annual NOx emissions to values from past studies that used
similar sampling time periods and a single sampling box. These include multiyear (2017–2019) mean emissions
from Goldberg et al. (2021) obtained using the OMI sensor and emissions from Lange et al. (2022) obtained with
select days of TROPOMI data from 2018 to 2020. Goldberg et al. (2021) estimated emissions for 10 of the 19
cities in our study. These we read from their Figure S10 in Supporting Information S1 for Karachi, Figure S11 in
Supporting Information S1 for 4 cities in India, and Figure S13 in Supporting Information S1 for 5 cities in
Southeast Asia and divide by the 0.77 midday to 24‐hr scaling factor used in that study. Emissions are reported by
Lange et al. (2022) for 5 of the 19 cities in our study. Based on the regression statistics in Figure 4, our emissions
are typically ∼25% more than estimates from these past studies. Exceptions are Mumbai, Ahmedabad, and
Chennai that in our study are 16%–29% less than Goldberg et al. (2021). Lange et al. (2022) used an earlier version
of the TROPOMI data product that has a known low bias in NO2 VCDs over very polluted scenes (van Geffen
et al., 2022). Differences in TROPOMI data products are the likely cause for our higher Delhi (by 27%) and
Singapore (by 18%) emissions. Relatively small error estimates from Lange et al. (2022) are because they only
propagate error contributions from the wind speed data and the EMG fit.

Discrepancies between Goldberg et al. (2021) and our emissions are most likely dominated by differences in wind
fields. When we apply our approach to the same OMI data product and the same time period as Goldberg
et al. (2021) (2017–2019), we obtain emissions estimates that differ by <20% from our TROPOMI emissions
values in Table S1 in Supporting Information S1 for 14 of the 18 cities that we succeed in obtaining emissions
with OMI. Goldberg et al. (2021) used ERA5 wind fields at 100 m that would have slower average wind speeds
than the surface to 900 hPa averaged wind fields we use (Section 2.2). Emissions have been shown to increase
with increase in wind speed by as much as 15% using winds sampled at 500 m compared to at 100 m for a
sensitivity test by Goldberg et al. (2022) for Dallas, Texas. Sampling box choice may also be a factor. For
example, the smallest of our 54 boxes yields NOx emissions of 102 mol s− 1 for Singapore that is 10 mol s− 1 less
than the mean of all EMG fits. Sampling period may be an issue too, though just for Delhi and Karachi. As these
cities are north of 25°N, only May–September observations were used by Goldberg et al. (2021). We find that
Delhi and Karachi mean May–September TROPOMI NO2 VCDs in 2019 averaged within the 4° × 4° domain
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selected for each city (Figures 2a and 2b) are 11%–12% less than those in October–April, due to the shorter
photochemical lifetime of NOx in the warmer months. Open biomass burning emissions also influence seasonality
in the TROPOMI NO2 VCDs, but the EMG fit accounts for this by distinguishing background NO2 (B in
Equation 1) from NO2 in the city plume (a in Equation 1).

We find that if we apply the EMG fit to individual months for Delhi and Karachi, all 54 EMG fits fail for Delhi in
July–August and yield spurious results in September due to large data loss resulting from persistent clouds during
the monsoon season. All 12 months are retained for Karachi, Singapore and Manila. November–April mean
values of a are 21% more than in May–October for Karachi, 9% more for Singapore, and 39% more for Manila.
This suggests that using NO2 VCDs for a portion of the year may yield systematic biases in emissions that may not
reflect seasonality in the underlying activities affecting the emissions. Larger wintertime than summertime
emissions have also been reported in the global study of Lange et al. (2022). They quantified summer‐to‐winter
emission ratios of ∼0.5 for Colombo and Delhi. The top‐down emissions calculation (Equation 3) does not fully
account for seasonality in photochemistry. The derived effective NOx lifetimes used to calculate NOx emissions
(Equation 2) are mostly influenced by dispersion. As a result, the effective lifetimes are much shorter than the
expected chemical lifetimes of NOx (de Foy et al., 2014). In the synthetic experiment scenarios tested by de Foy
et al. (2014), the EMG fit applied to wind rotated data yielded an effective lifetime of 4 hr for a 12‐hr chemical
lifetime scenario. According to Shah et al. (2020), the chemical lifetime of NOx for central‐eastern China centered
at ∼35°N, the northerly portion of our domain, ranges from ∼6 hr in summer to ∼24 hr in winter. None of the
monthly effective lifetimes for our target cities reproduce this seasonality and the longest lifetime is 12.7 ± 1.8 hr
for Lahore in June. The implication is that the size of absolute emissions derived with sub‐annual satellite data
may be biased, but should have negligible effect if used to quantify relative trends, as in Goldberg et al. (2021) and
Laughner and Cohen (2019), for example.

Figure 4. Comparison of our and past top‐down nitrogen oxides emissions. Symbols compare our emissions to those from
Goldberg et al. (2021) (red) and Lange et al. (2022) (blue). Error bars are overall uncertainties for our study (Section 2.2,
Table S1 in Supporting Information S1), the same 53% uncertainty applied to all cities by Goldberg et al. (2021) and the city‐
specific uncertainties for Lange et al. (2022). Lines are the Theil regression fit (solid black) and 1:1 relationship (dashed
gray). Inset text gives the regression statistics and Pearson's correlation coefficient (R). Arrows and inset text for Dhaka give
the error values that extend beyond the plotting range.
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3.4. Comparison to Bottom‐Up Emissions

Figure 5 compares annual top‐down and bottom‐up NOx emissions. According to our HEMCO simulations,
anthropogenic sources account for most (>87%) annual NOx emissions. The relative differences between our top‐
down estimates and the bottom‐up inventory are within 50% for Mumbai (<1%), Bangkok (2%), Chennai (10%),
Ahmedabad (15%), Kolkata (18%), Singapore (21%), Bangalore (33%), and Manila (35%). A 50%–100% dif-
ference occurs for Kuala Lumpur (50%), Ho Chi Minh City (52%), Jakarta (54%), Delhi (64%), and Colombo
(92%). Even greater relative differences occur for Islamabad (2 times), Karachi (2.1 times), Lahore (2.4 times),
Yangon (3.6 times), Dhaka (6.9 times), and Kabul (11‐fold). The largest absolute discrepancies are for Dhaka and
Jakarta. Bottom‐up emissions are 107 mol s− 1 less than the top‐down values for Dhaka and 78 mol s− 1 more for
Jakarta. On a mass basis, this is equivalent to a 155 Gg NOx as NO2 underestimate for Dhaka and a 113 Gg NOx as
NO2 overestimate for Jakarta.

The different years used (2018 for HTAP, 2019 for TROPOMI) should at most account for a 14% difference in
emissions, based on the size of annual trends inferred by Vohra et al. (2022) using long‐term observations of OMI
NO2 VCDs over large and fast‐growing cities in South and Southeast Asia. Vohra et al. (2022) identified that
emission inventories do not capture the steep decline in NOx emissions in Jakarta attributed to national policies
targeting vehicles. In addition to misrepresenting annual changes in underlying activities, the emission factors are
mostly informed by studies of China and Japan (Kurokawa & Ohara, 2020). The bottom‐up and top‐down
emissions differences for many cities also exceed the ±30% difference that results from the choice of bottom‐
up emissions grid sampling and the ±30% difference from the timing of the top‐down (midday) and bottom‐
up (24‐hr) estimates inferred by Goldberg et al. (2021).

Even though there are large uncertainties and biases in bottom‐up emissions, a latitudinal pattern in the dis-
crepancies is apparent in Figure 5. Top‐down emissions are greater than bottom‐up emissions for cities to the
north and vice versa for cities to the south, so that in general top‐down emissions exceed bottom‐up emissions in
South Asia and vice versa in Southeast Asia. NOx chemical loss varies with latitude, due to variability in the
amount of sunlight available to form hydroxyl and peroxy radicals required to form HNO3 and organic nitrates,
the main daytime chemical loss pathway for NOx. This latitudinal pattern is likely because the EMG fit does not
fully account for spatial variability in NOx photochemistry, imparting a bias in the top‐down emissions. The size
of this bias will depend on the relative contribution of NOx chemical loss to total loss in the wind rotated plume.
The latitudinal pattern occurs even if instead of using the same [NOx]/[NO2] of 1.32, we use city‐specific [NOx]/
[NO2] from GCHP (Figure S6 in Supporting Information S1).

Figure 5. Comparison of annual top‐down and bottom‐up nitrogen oxides (NOx) emissions for target cities. Data are colored
by city center latitude and split into top‐down NOx emissions <35 mol s− 1 (a) and ≥35 mol s− 1 (b). Error bars are the overall
uncertainty in top‐down emissions estimates. Gray lines indicate 1:1 agreement (solid) and ±50% difference (dashed). The
bottom‐up emissions sampling extent of each city is in Figure S2 in Supporting Information S1. Data used to generate the
figure are in Table S1 in Supporting Information S1.
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4. Conclusions
City NOx emissions can be derived with a now well‐established approach using satellite observations of nitrogen
dioxide (NO2), wind rotation and a Gaussian fit to the city plume. Issues with this approach are that the choice of
sampling box around the city center is not standardized and so is prone to subjective box selection and the
Gaussian fit often fails or yields non‐physical best‐fit parameters. Here we address these issues by applying 54
sampling boxes to isolated cities. We test our method with TROPOspheric Monitoring Instrument (TROPOMI)
NO2 observations for 2019 over 19 large, isolated cities in South and Southeast Asia that lack contemporary,
publicly available bottom‐up emissions estimates. Our approach offers advantages over the single sampling box
approach of being faster, more automated, more successful, and yielding city‐specific error estimates of best‐fit
parameters.

Annual NOx emissions, obtained for all 19 cities, are <73 Gg NOx as NO2 a
− 1 for most cities, between 73 and

145 Gg NOx as NO2 a
− 1 for Karachi, Delhi, and Jakarta and >145 Gg NOx as NO2 a

− 1 for Bangkok, Dhaka, and
Singapore. The overall uncertainty in the annual emissions is 30%–60%. Our NOx emissions estimates are
strongly correlated (R = 0.95) with values from past studies, with explainable differences that are due to dif-
ferences in satellite data products, wind fields, and months targeted. The latter we suggest may lead to biases, as
the top‐down emissions estimate does not properly account for seasonality in photochemical loss of NOx. Relative
differences between our top‐down estimates and a widely used bottom‐up inventory are <50% for 8 of the 19
cities, within 50%–100% for Kuala Lumpur, Ho Chi Minh City, Jakarta, Delhi, and Colombo, and much greater
for Karachi (2.1 times), Islamabad (2.1 times), Lahore (2.4 times), Yangon (3.3 times), Dhaka (6.9 times), and
Kabul (11‐fold). There is a latitudinal dependence of the size of these discrepancies that we suggest is because the
top‐down approach does not properly account for spatial variability in the chemical lifetime of NOx.

The increased success of deriving NOx emissions with our updated approach enables us to identify that further
development is needed to account for time and space variability in the chemical lifetime of NOx to fully exploit
the top‐down approach to interrogate seasonality in emissions, to validate bottom‐up emissions, to exploit hourly
observations from geostationary instruments, and to inform air quality regulation.
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