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Abstract. Most debates on air quality in India are (often) limited to big cities
like Delhi, Mumbai, Kanpur, Pune, Hyderabad, and Kolkata, even though most
of India’s population lives in Tier-2, Tier-3, and smaller towns. There is little
by way of local measurements for ground truthing or an assessment of sources
contributing to air pollution problems in urban and rural areas or the growing
health impacts associated with these pollution levels. The Air Pollution kNowledge
Assessment (APnA) city program, launched in 2017, is an attempt to fill this lacuna
of information, with an objective to create a baseline database for air pollution
in Indian cities using open-access reanalysis data, satellite imagery, and satellite
retrievals to inform policymakers as they evaluate the evolution of pollution and
chart out strategies to improve air quality. This paper is based on the presentations
delivered at two workshops - MAQTDS 2022, held as part of DASFAA 2022,
and DCAAQ at BDA2021 - outlining an overview of air quality in India and
opportunities for research to support air quality analysis using bigdata resources.
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1 Introduction — Air Quality in India

More than 50 Indian cities are ranked among the top 100 with the worst annual PM; 5
averages, with Delhi taking the top spot among the capital cities worldwide in 2020
(https://www.iqair.com). Between 1998 and 2020 India’s annual average PM> 5 values
have at least doubled [1]. On India’s air quality index (AQI) scales, pollution levels
over the Indo-Gangetic plain (IGP) moved from poor to very poor and severe conditions
and the Central India region moved from moderate to poor conditions. At the admin-
istrative level, number of districts complying with India’s annual ambient standard of
40 pwg/m? dropped from 440 to 255 (out of 640 districts as per Census 2011) and number
states dropped from 29 to 21 (out of 36, including union territories). Traditionally, these
increases are observed over the cities. However, in the recent reanalysis databases which
combine satellite retrievals, similar trends were observed over the rural areas. In these
23 years, total population complying with the annual ambient standard dropped from
60.5% to 28.4%, with most of this change coming from non-urban areas in IGP. In the
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same period, the population exposed to poor, very poor, and severe AQI levels increased
from 0.0% to 17.8%. In 2020, only a small portion of India’s population lived in areas
complying with World Health Organization (WHO)’s new guideline of 5 g/m>.

According to the Global Burden of Disease (GBD) analysis, an estimated 1.2 million
premature deaths in India can be traced back to exposure due to outdoor PM2.5 pollu-
tion levels [2]. According to GBD-Mapping Air Pollution Sources (MAPS) program,
approximately 80% of the pollution originated from fossil fuel combustion and resus-
pended dust and the remainder coming from natural activities like sea salt, dust storms,
and some agricultural activities [2, 3].

In 2019, India’s Ministry of Environment Forests and Climate Change (MoEFCC)
announced the National Clean Air Programme (NCAP) [4]. Under the programme, 132
non-attainment cities (i.e., cities that did not meet the annual ambient standard in 2017)
were asked to prepare action plans to reduce their ambient PM2.5 pollution levels by
20-30% by 2024, compared to the pollution levels recorded in 2017. Individual cities
have started to assimilate information on emissions and pollution loads to support the
action plans.

In air quality management, general practice is to rely on monitoring data, which is
basically snippets of information, both spatially and temporally. In India, there is an acute
lack of ambient monitoring efforts in most cities to build a story just on that database.
Using CPCB’s own thumb rules, India requires 4000 stations across India and as of
February 2022 there are only 340 in operation. Even the surveys and tests conducted
to understand emissions are spread across temporally. For example, a pool of emission
factors tests for vehicles was last conducted in 2010 as part of CPCB’s 6-city study and
there was one more round for a sample of vehicles in Pune in 2018. While these snippets
of information are useful for ground truthing and expanding our understanding of the
pollution loads and source strengths, the monitoring database needs to expand beyond
the current capacity.

On the other side, we have the atmospheric modelling community, combining a larger
pool of data from multiple resources including satellite retrievals and chemical transport
models, helping us build patterns in emissions, pollution, and activity data, all in the
hope of plugging the gaps in the monitoring data. Figure 1 presents a schematic of major
components of air quality modelling. All of them are data intensive, computationally
challenging, and require substantial personnel training to move forward from planning to
execution. (a) Emissions modelling for both aggregate emissions and spatial/temporal
allocations need a lot of data on source strengths, source locations, source emission
control performance, and proxies for allocation of emissions at various scales (smaller the
grid size, larger the need for proxies for finer distribution). (b) Meteorological modelling
is streamlined with the existence of multiple global forecasting systems and agencies
distributing the 3-dimensional fields to support scientific research and communications.
For example, NASA’s GFS and ESA’s ECMWE. In India, one such system is maintained
by the Indian Meteorological Department (IMD), which issues 10-day sub-regional
forecasts and some feeds customized for fishery and farming communities. However, if
the need is for meteorological data at a finer resolution, say 1-km over a city airshed,
then downscaling models like WRF must be adapted, which require large computational
capacity and personnel training. (c) Chemical transport modelling can vary in size and
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application depending on the requirements. Multiple models exist to accommodate these
needs — models like CMAQ, CAMx, WRF-chem, GEOS-chem, and CHIMERE can help
simulate multiple pollutants with full chemistry and evaluate the impacts of advection
and chemistry at urban, regional, and global scales, including source apportionment; and
models like inMAP and GAINS can help integrate chemical transport model results to
evaluate scenarios and health impacts. (d) Validation is the central pillar of the whole
modelling exercise, which is dependent on the monitoring data. There is no limit on data
that can be used for validating and calibrating the modelling results, as long we have
sample large enough to represent reality and represent the modelling domains spatially
and temporally. (¢) And finally, dissemination for public awareness and policy dialogue,
which requires a completely different set of teams to take the message forward.

Snippets - Monitoring Big-data - Modeling

. ’. . .: ) & lI"l

Fig. 1. Schematic of data management required for air quality analysis

While the kind of information gathered from monitoring and modelling exercises
is different in shapes and sizes, both are integral pillars of an air quality management
campaign, both needing snippets of information like surveys and pattern building from
large (to very large) information databases. This paper presents a summary of research
opportunities of using bigdata to study India’s air quality.

2 Big Data Research

2.1 Support to Ambient Monitoring Efforts

As of February 2022, there are 340 continuous monitoring stations operating across India
covering 174 cities with at least one station. Delhi (40), Mumbai (21), Bengaluru (10),
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Ahmedabad (8) and Pune (8) are few cities with multiple stations. The total monitors
count translates to 0.25 per million population and in most cases is not a representative
sample for regulatory and research grade pollution analysis [5, 6]. This density factor is
the lowest among the big countries - China (1.2), the USA (3.4), Japan (0.5), Brazil (1.8)
and most European countries (2-3). In addition to the continuous stations, CPCB also
operates 800 manual stations to collect 24-h average pollution levels for up to 104 days
in a year.

Meteorology, population, and human settlements databases were accessed to support
the monitoring network design under NCAP, starting with determining a city’s represen-
tative airshed. A city’s airshed is determined using urban-rural classifications, landuse
information, and an understanding of the known emission sources in the immediate vicin-
ity of the city’s administrative boundary. Human settlements layer is used to estimate the
urban and rural shares of area and population in the city’s airshed. The minimum number
of sampling sites for each airshed is determined using the population information and
protocols established by CPCB [7] and the sampling frequency is determined using the
meteorological information (Table 1).

Table 1. Source and use case of open GIS databases

Field Database Design component

Meteorology Weather Research and Forecasting | # Sampling seasons
(WRF) model with global inputs
from NOAA'’s National Centres for
Environmental Prediction (NCEP)
[8] was used to build 3-dimensional
meteorological fields, such as wind
speeds, wind directions,
temperature, relative humidity,
pressure, precipitation, mixing layer
heights, and surface threshold
velocities at 1-h temporal resolution
for base year 2018

Population Census-India database at the district | # Sampling sites
level [9] and Landscan of Oakridge
National Laboratory [10] were used
to create 0.01° resolution population
database for the city airsheds. The
raw databases are available at 30 s
spatial resolution

Global Human settlement (GHS) | GHS layer of Landsat satellite # Sampling sites
imagery was used to designate the
city airshed grids and the gridded
population as urban and rural [11]
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Fig. 2. (a) Allocation of monitoring sites by zones in Bengaluru (b) Expansion of built-up area
in the Greater Mumbai airshed.

Overlapped with commercial activity density information in the form of number
of hotels, hospitals, schools, parks, malls, markets, apartment complexes, industrial
estates, worship sites, banks, eateries, fuel stations, and traffic spots like parking and
stops, the recommended number of stations can be further assigned to a zone or a sub-
district for better spatial representation — Fig. 2a presents an example for allocating
41 recommended stations in Bengaluru’s 8 zones, peri-urban area surrounding the city
administrative boundary, and the background rural areas in the airshed. The Human
Settlement Built-Up maps can also be utilized to systematically shift the location of
the monitoring sites as the city expands — Fig. 2b presents an example of expansion of
the Greater Mumbai region, with the built-up area increasing from 384 km? in 1975 to
885 km? in 2014, which is a proxy for increasing demand for commercial and transport
amenities, construction material, and together also increasing the demand for additional
ambient monitoring for better representation of the activities.

2.2 Use of Satellite Retrievals

In 2020, COVID-19 lockdowns in March and April provided a glimpse into what is
possible when the emissions are eliminated or reduced at all the known sources. In
India, starting on March 24% 2020, four lockdowns were announced (for 21, 21, 19,
and 14 days), with the strictest regulations during the first lockdown period and slowly
easing the restrictions by the end of the fourth. Thus resulting in better air quality across
India with most improvements observed during the first period [12]. Lockdown periods
featured the following regulations - (a) all the offices implemented work-from-home
and all the schools, colleges, universities, training institutions, markets, malls, religious
centers, and other public spaces were shut - this reduced most of the demand for passenger
movement on the roads (b) all the shops and small-scale industries in the urban and rural
areas were shut - with exceptions introduced after for essential food and medicine supply
chains (c) all the construction activities were banned including brick manufacturing -
this reduced the dust loading in the hotspots, debris movement, and construction freight
movement (d) all the open waste burning activities were banned - this was possible since
movement on the roads and inside/outside the residential communities was restricted
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(e) all the passenger and public transport movement was stopped - with the exception
of police, press, and medical practitioners and some with special permissions on a need
for basis (f) all the freight movement was stopped on the highways and at the interstate
border crossing - this was eased after the first week in response to supply shortages for
essential goods in the cities (g) heavy industries (like power plants, refineries, fertilizers,
cement, iron and steel, and other ore processing units) limited their operational times
and fuel consumption loads, in response to a lower demand (h) road dust resuspension
was at the minimum with reduced traffic on the roads and no construction activity.

While no primary surveys were conducted to ascertain these changes in the sectoral
activity, the satellite observations provided before and after measurements to study this
natural experiment in detail. The data from the ground monitors and the satellite retrievals
also provided necessary data to study new research questions, which in the past would
have been possible only in theory or lab experiments. Such as (a) impact of low emission
densities on ozone photochemistry [13] (b) evaluation of NOx-VOC control regimes [14]
(c) estimation of true background concentrations for cities, in the absence of all or most
of the major emission sources [15].

The air quality during the lockdown periods is one example where the use of bigdata
was demonstrated to explain the extreme lows and evaluation of daily trends. PM2.5
concentrations dropped across the country at the start of the lockdown periods and with
every phase there is a marked increase in the average numbers was observed. On average,
every lockdown period witnessed at least 25% drop across India, most (as high as 70%)
coming from the cities. PM pollution is affected by all the known sources and all the
regulations discussed above led to these drops [16, 17]. A climatological analysis of the
satellite retrieval based AOD estimated a drop of 50% in the PM2.5 concentrations at
the start of the lockdowns and slowing catching up to the decadal averages at the end of
the 4th lockdown (see Fig. 3) [18]. The 4 lockdown periods ended on May 31st, 2020.
Starting on June 1st, 2020, restrictions started to ease in phases, with individual states
either continuing or easing them at their discretion. Similar databases are available for
other pollutants — SO2, NO2, CO, HCHO, and Ozone, all of which can used to not only
study the impact of chemistry and but also can be used to plug the gap in the monitoring
efforts.

It is important to understand that the global models and satellite retrievals come
with a lot of assumptions. While these broad insights are very helpful, limitations must
be understood before applying these databases for public and policy use. Some of the
limitations include (a) global models run at a coarse spatial resolution. For example,
the reanalysis results presented in the introduction are from a model with 0.5-degree
resolution, which cannot capture the core urban activities (b) the satellite retrievals used
are just passes over India (a snapshot) and not geostationary with longer time stamps
for a given day and (c) India’s on-ground monitoring network is not wide enough to
feed these models for representative calibration. Despite the limitations, satellite data
retrievals during the COVID-19 pandemic and the associated lockdowns provided a new
normal for Indian cities — a realization that “clean air”” and “blue skies” is possible also
during the times when it is not raining or windy. Some hard decisions are required to
achieve such a reduction in the emissions at all the sources and a change in how the cities
and regions manage air quality to sustain the benefits, and in this process bigdata can
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Fig. 3. (a) Satellite retrieval based AOD, averaged over North India for the lockdown period
days between 2016 and 2020 [18] and [personal communication with co-author Dr Pawan Gupta,
NASA] (b) Satellite clusters from NASA, ESA, and South Korea to support daily air quality
analysis for multiple pollutants.

help nudge the change. Over Asia, GEMS system is expected to provide geostationary
data for India in the coming years.

2.3 Use of Meteorological Data

Meteorology plays an integral part of pollution’s ups and downs. It is responsible for the
movement of emissions from source to receptor regions depending on the wind speeds
and direction, for chemical evolution of the various pollutants within the gaseous phase
and from gaseous to aerosol phase depending on the temperature, relative humidity, and
pressure components which drive the chemical kinetics, and scavenging of pollution in
the form of dry and wet deposition depending on wind speeds, landcover, and precipi-
tation rates. While all these components are standardized in multiple chemical transport
models, meteorology also plays a critical role in (a) emission modulation and (b) early
pollution alert system.
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The meteorological models like WRF can build high resolution lightning and dust
storm emissions in forecasting and hindcasting mode. Both these sources are uncertain
and depend not only on the model formulation to initiate these natural emissions, but
also depend on multiple bigdata resources like landuse-landcover, seasonality in the soil
moisture content, and cloud-cover information, all of which can be assimilated using
multiple satellite products [19]. For example, NASA’s MODIS satellite products include
an 8-day ensemble landcover information and leaf area index, which is a direct input for
dust-generation modules in WRF and biogenic-emissions generation module MEGAN
[20].

Meteorological information is also useful in adjusting an emissions inventory in a
dynamic mode. For example, precipitation rates at grid and hourly scale can be used to
turn on or off resuspension emissions depending on a threshold. At the same time, soil
moisture content after the rains can be used to decide when to turn on dust resuspension.
For large scale dust storms over arid regions, formulation includes this if-then clause
as a default. However, for urban scale assessments, where dust resuspension from on-
road and construction activities is high, this correction must be linked to fine resolution
meteorological data to adjust the emissions automatically, before the number is entered
into the chemical transport model for further processing.

A similar correction can be employed in the space heating sector when the surface
temperature and air temperature at 2 m drops below a threshold. In India, the during the
winter months, surface temperature can drop to under 15 °C which triggers the need for
heating. In most non-urban places, this demand is met by burning biomass, coal, and in
some cases waste [21].

Summary of meteorological statistics for 2 cities is presented in Fig. 4 — Lucknow
from North India and Hyderabad from South India (and summaries for 640 Indian
districts is available at https://urbanemissions.info). For Lucknow, surface temperature
is low for substantial number of hours during the winter nighttime, informing that the
space heating emissions are an important part of Lucknow’s inventory. For Hyderabad,
while space heating is not a major component of its inventory, the wind directions alter
significantly between the summer and the winter months, informing that the regional
sources outside the city in the respective directions are important to track, since they have
the right conditions to effect Hyderabad’s air quality, as part of outside (“boundary’)
contributions at the chemical transport modelling stage [22, 23]. These deductions and
dynamic adjustments are not possible from the use of just measurements at 1 or 10
locations in a city, but only possible when 3-dimensional high resolution meteorological
modelling is conducted.
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Fig. 4. Summary of wind speed, wind direction, temperature, and mixing heights as % hours in
various bins in each month for 2 cities — Lucknow from North India and Hyderabad South India

2.4 Use of Google Earth Services

High resolution image processing is fast becoming an integral resource with easy access
to multiple satellite feeds and algorithms to retrieve information for immediate use,
not only among the air pollution modelling community, but also other areas like flood
management and water resource management [24-26]. One free resource is Google
Earth imagery, which has good spatial resolution to spot roads, landuse types, large
industries, and large landfills. Below are examples of brick kilns spotted in Punjab and
outside Mumbiai, landfill in Mumbai, and rock quarries outside Pune (see Fig. 5).

(a) . (b)

Clamp style brick kilns,
Mumbai

Brick kilns,
Punjab State

Deonar dumping grounds,
Mumbai

March, 2016 Fire

Fig. 5. Examples of activities spotted using Google Earth imagery (a) ~3000 fixed stack brick
kilns in the state of Punjab (b) clamp style brick kilns outside Mumbai (c) ~11 km? of rock quarries
outside Pune (d) ~2 km? landfill in Mumbai processing ~8000 tons per day waste from the city
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While just the location and size of an entity is not enough to adjust the emissions,
this information is useful when overlapped with other satellite products like aerosol
optical depth, columnar NO, concentrations and columnar SO, concentrations, which
can help deduce the source strengths. Knowing the sources around a city also helps in
better storytelling of the air pollution problem, along with the confidence to say whether
the source is officially part of the calculations or not.

For example, most of the rock quarries outside Pune are unofficial, running off-grid,
and using engines likely banned in the city for crushing rocks and transporting locally.
Most of the diesel used for this activity is not accounted in the official records of the
city, but the emissions from the quarry activities will affect the air quality in the middle
of the city.

For example, the clamp style brick kilns (showing outside Mumbai) are haphazardly
placed around an area, with bricks piled along with biomass and coal mix to burn and
bake. While the fixed stack kilns (showing in Punjab) are easy to spot, the clamp style
kilns can only be mapped as an area and use it for back of the envelope calculations.
This is the most inefficient way of manufacturing bricks and knowing where they are is
the most useful information for air quality analysis and management.

2.5 Use of Google Maps Services

This is the only example which is a paid service. From the Google Maps distance API
service, with each call, between 2 points, data can be extracted on total distance, total
current time taken to travel (includes congestion times), total typical time taken to travel
(with no congestion times), information on each of the segments (turns) along the way
including segment distances. The base information from each of these calls is enough to
estimate current average traffic speeds by grid (defined as ~1-km?). For 30 Indian cities
and non-Indian cities, such data was extracted and averaged at grid level for further
processing (see Fig. 6).

Some applications include (a) development of speed profiles and congestion zones
in the city to support urban transport planning (b) modulation of the vehicle emissions
profile with average vehicle speed at grid level, such as higher CO and VOC emissions
at speeds under 10 kmph to indicate incomplete combustion in the engines (c) dynamic
adjustment of road dust resuspension, such as turning of resuspension when the grid
speeds are under 10 kmph. The later 2 options can play a key role in altering photo-
chemistry and ozone sensitivity to change in NOy to VOC emission ratios and absence
of dust particles for reactions.

2.6 Use of Open Street Maps (OSM) Database

An open and widely used resource is OSM database, which can provide several use-
ful GIS layers information for most cities worldwide (https://download.geofabrik.de).
For examples, roads (differentiating primary, secondary, motorable, and unclassified),
railway lines, and commercial activity information in the form of number of hotels, hos-
pitals, schools, parks, malls, markets, apartment complexes, industrial estates, worship
sites, banks, eateries, fuel stations, and traffic spots like parking and stops. This is a
crowd sourced database, so some level of ground truthing is advised before full use of
the layers.
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3 Conclusions

Air quality modelling through the stages of emissions, meteorology, and pollution, fol-
lowed by public dissemination of the information generated is nothing short of art (see
Fig. 1). At every stage, there is a lot of information (old and new) available in the public
domain, which can be integrated to build defendable emissions and pollution maps to
study “what-if”’ scenarios in support of clean air action plans. Figure 7 presents a sum-
mary of such an analysis conducted for the city of Patna — what will be impact of full
implementation of actions listed under NCAP.

There is no second guessing that the ambient monitoring network must be expanded —
not only in the cities, but also rural areas where similar growing trends are vividly visible.
The monitoring data forms the basis for validating the bigdata. We also need more local
level efforts to strengthen our understanding — this includes both bottom-up emissions
and top-down source apportionment studies.
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