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Executive Summary
What is the single largest source of air pollution exposure in India? You would be perhaps surprised to 

find that the answer, with a near consensus in the published scientific literature, is neither transportation 

nor stubble burning. Instead, it seems to be the millions of households across the country burning solid 

fuels like firewood in their homes for cooking, heating and other energy services. The resulting pollution 

not only has an enormous health impact on the households themselves, but it likely accounts for a 

quarter to a third of ambient air pollution across the country. Working towards ensuring universal access 

to cleaner fuels like LPG should therefore be one of the pillars of India’s pollution control efforts. 

When families burn solid fuels (like wood, dung and agricultural waste) in their homes, various kinds of 

air pollutants are generated. One of the many pollutants emitted by this combustion of solid fuels is fine 

particulate matter (PM
2.5

, particulate matter with aerodynamic diameter <2.5 µm). Exposure to PM
2.5

 has 

been shown to cause a range of serious health problems, including respiratory and heart disease, and 

can lead to early death. 

Household air pollution (HAP) is the term given to emissions of PM
2.5

 that are generated from household 

solid fuel burning. People are exposed to HAP in homes where solid fuels are burned. Exposure to HAP 

indoors, near the source of the pollution, is estimated to result in approximately 800,000 premature 

deaths per year in India alone.  HAP emitted indoors goes outdoors and is a leading contributor to 

outdoor ambient air pollution. Other major sources of ambient air pollution in India include road 

transport, the industrial sector, open biomass burning, coal-fed power plants, brick kilns, and construction 

dust. Exposure to all ambient PM
2.5

 is estimated to result in approximately one million premature deaths 

annually in India. 

There have been seven published scientific studies to date that model the proportion of ambient air 

pollution in India and associated deaths caused by HAP. From these studies, we find that HAP causes at 

least 22% and as much as 52% of ambient PM
2.5

 in India (see Figure 1). The median estimate from these 

studies is about 30%. Other sources like transportation, power plants, and industries are estimated to 

contribute less towards ambient PM
2.5

 than HAP (Figure 1). Of course, within cities, especially highly 

polluted ones like Delhi, sources like transportation and construction dust can contribute more locally. 

There is a wide range of estimates in the literature. This spread results from differences in (1) the way 

that air pollution models account for specific types of air pollution and chemistry (aerosol and trace gas 

chemistry, meteorology, and other PM
2.5

 formation factors); (2) the resolution of the model (geographic 

grid size), and (3) the years considered in the model. The definition of residential emissions also differs 

between studies, with emission inventories including varying combinations of cooking, heating, and 

lighting emissions, and some that also couple commercial emissions with residential emissions. Such 

differences in inputs and modeling methods are not unusual in scientific studies. 

Even the lowest of the estimates of contribution of HAP to ambient air pollution indicates that household 

sources contribute to a significant portion of the large public health burden from ambient air pollution. 

Across all studies, HAP contribution to average air pollution exposure in India is estimated to be about 

60% higher than all coal use, 4x higher than open burning, and 11x higher than transportation in India. 

Critically, this is in addition to the substantial risk households experience directly from the combustion 

of these fuels. Put another way, in addition to the 800,000 premature deaths annually due to indoor 

exposure to HAP, approximately another 300,000 (30% of one million) can be attributed to HAP due to 

outdoor exposure. Cleaning up household fuel use thus both directly benefits those exposed to HAP 

and has broader population benefits by reducing ambient air pollution.
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FIGURE 1: Percentage contribution towards 
ambient PM

2.5
 in India. The height of the bars 

shows the median value of contribution among 
the published studies over India. The range 
encompasses the highest and lowest estimates 
among the published studies.

India needs to act on each of the major sources for air 

pollution levels to come closer to the national standards. 

Given that the median estimate of contribution of HAP 

to ambient PM
2.5 

is 30% and the lowest estimate is 22%,, 

reducing emissions from household solid fuel use should 

be a top priority for the Indian government. The Pradhan 

Mantri Ujjwala Yojana (PMUY) is an important policy 

effort in this direction. However, it is essential to look to 

further expand the access of LPG to more beneficiaries, 

and work towards ensuring sustained use of LPG by 

households that have already joined the programme. 

We should also redouble efforts—most likely, ensuring 

access to reliable electricity— to substitute for other 

household pollution sources, such as bathwater heating 

and kerosene lighting. Averting 1.1 million premature 

deaths annually need us to take bold strides towards 

universal access to cleaner residential fuels. 

1. Introduction 
Billions of people worldwide rely on unclean and 

unhealthy household energy sources for cooking, 

lighting and heating – despite major progress in recent 

decades to address global poverty and development. 

About 40% of humanity uses wood, agricultural residues 

(such as rice straw), coal and other solid fuels for daily 

cooking (Bonjour et al., 2013). The figure is likely even 

higher if other energy services, such as lighting and 

heating, are considered. A recent study (Lacey et al., 

2017) estimates that complete phase out of solid fuel 

usage globally has the potential to avoid 10.5 (5.5-10.8) 

million premature deaths from 2010-2050. In India alone, 

about 160 million households rely on solid fuels for their 

household energy needs (Venkataraman et al., 2010). 

When these fuels are burned, they emit fine particles 

(PM
2.5

), carbon monoxide (CO), and a range of other often 

toxic products of incomplete combustion. Exposure1  to 

“household air pollution” (HAP)—smoke from burning 

solid fuels in the home—results in an estimated 800,000 

premature deaths every year in India (Dandona et al., 

2017). Ambient, or outdoor, PM
2.5

 exposure in India 

1  See Box 1 for an overview of terminology

causes approximately one million premature deaths 

annually (Cohen et al., 2017). In combination, exposure 

to household and ambient air pollution form the second 

largest risk factor for ill-health in the country, after poor 

child and maternal nutrition (Dandona et al., 2017; Wang 

and GBD-Collaborators, 2016).

Perhaps not surprisingly, HAP contributes to ambient 

air pollution, and ambient air pollution affects indoor 

air quality. Ambient air pollution arises from a variety 

of sources, including vehicles, power plants, industrial 

processes, and crop waste burning. Pollutants from these 

additional sources may infiltrate into the households 

and contribute to household exposure (Baumgartner et 

al., 2014). Household fuel burning also impacts ambient 

air quality. Until recently, the household contribution to 

ambient air pollution was under-recognized and poorly 

characterized. The full impact of HAP is thus composed of 

the exposures to HAP 1) inside and around a given house 

and 2) from the household contribution to ambient air 

pollution. 

To the best of our knowledge, there have been seven 

independent published estimates of the fraction of 

ambient air pollution due to household fuel combustion, 
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starting with the first study in 2014 (Chafe et al., 2014). 

These estimates vary in geographic scope – some are 

global, while others focus on specific regions or countries. 

In India, estimates of the fraction of ambient air pollution 

attributable to HAP range from 22-52%. In contrast, other 

major sources like transportation, power plants, and 

industries are estimated to contribute 2-10%, 8-15%, 

8-11% respectively Each independent estimate uses a 

combination of different datasets, assumptions, time 

periods, study domains, and other inputs. 

The purpose of this policy paper is to explore the 

large variation in the estimates for India and to note 

commonalities and differences between the estimates.  

In Section 2, we introduce the seven studies and their 

estimates of the contribution of HAP to ambient 

PM2.5 exposure. In Section 3, we delve deeper into the 

comparisons between these estimates, and outline the 

sources of differences. Section 4 discusses the policy 

implications, and concludes. 

2. Contribution of HAP to 
ambient PM

2.5
HAP is created when families burn solid fuels for cooking, 

lighting, space and water heating. These emissions 

contribute to air pollution exposure near where fuels are 

used and then escape through openings in the home, 

such as windows, doors, eaves, and chimneys, worsening 

ambient air quality. Some households burn solid fuels 

outdoors, and the emissions directly impact ambient PM
2.5

 

concentrations (Lam et al., 2017). PM
2.5

 is emitted directly 

from household fuel combustion and contributes both 

“primary PM
2.5

” including black carbon (BC) and organic 

BOX 1: Defining air pollution and air pollution emissions, 
emissions inventories, concentrations, and exposures
Air pollution is a mixture of gases and particles that come from a variety of sources, including industry, automobiles, 

household fuel use, and burning of agricultural fields (“open burning”). There are hundreds of substances in the 

air, but very few of them can be easily and regularly measured. One that is often measured is particulate matter 

with an aerodynamic diameter of less than 2.5 µm, or PM
2.5

. PM
2.5

 is so small that it cannot be seen unaided. It is 

much smaller than a grain of sand, or even the width of a human hair. Exposure to PM
2.5

 is associated with adverse 

health outcomes, including pulmonary and cardiovascular diseases.  Many countries around the world regulate 

PM
2.5

. It is commonly measured as part of government air monitoring networks and during research studies. In 

areas where measurements are not possible, levels of PM
2.5

 can be estimated using mathematical models, such as 

chemical transport models (See Box 2). 

Health studies focus on emissions, concentrations, and/or exposures to PM
2.5

. Emissions are expressed in release of 

a pollutant per unit time, per activity, or per unit fuel burned (for instance, milligrams of PM
2.5

 per gram of wood or 

coal combusted, or grams of PM
2.5 

per minute, or grams of PM
2.5

 per vehicle mile travelled). Emissions inventories 

are databases of emissions – often at the state, national, or regional level – for a variety of air pollutants from a range 

of sectors (industry, transport, residential, power generation, etc). These inventories are often based on available 

measurement data and knowledge about each sector’s polluting activities at a given time. They are calculated by 

multiplying activity data by emission factors for each of the source categories, and often for subcategories such as 

types of combustion (e.g. coal, oil, natural gas) and traffic (e.g. light- and heavy-duty vehicles). Multiple institutions 

around the world work extensively on developing separate emission inventories. There is no benchmark to which 

the emission inventories developed by these institutions can be compared to decide the best available inventory

Concentrations are typically measured in terms of mass of pollutant per volume air. Concentrations change as 

emitted pollutants interact with the environment. Air pollution exposure is often measured in the same units as 

concentrations but takes into account whether and how people come in contact with pollutants. For example, a 

small fire on a distant mountaintop, far from where people live, may lead to a high measured concentration at that 

mountaintop, but may have little impact on people’s exposure, since they are far away from the pollution, which is 

heavily diluted before it reaches them. Conversely, a cooking fire in a home may lead to both a high concentration 

of air pollutants and a high level of exposure among those in the house.
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carbon (OC) and “secondary PM
2.5

 ” formed as emissions 

of sulfur dioxide (SO
2
), nitrogen oxides, volatile organic 

compounds, and semi-volatile organic compounds react 

in the air downwind from the stove (Fleming et al., 2018; 

Reece et al., 2017). 

Seven modelling studies (Chafe et al., 2014; Lelieveld 

et al., 20152; Butt et al., 2016; Silva et al., 2016; www.

urbanemissions.info; Conibear et al., 2018; GBD-MAPS 

Working Group, 2018) have estimated that, for India, 

HAP contributes to between 22-52% of ambient PM
2.5

 

exposure. These studies used either global or regional 

chemical transport models (CTM, See Box 2) paired with 

source-specific emission inventory data (see Box 1 for 

discussion on emission inventories) to apportion total 

ambient PM
2.5

 to specific sources. These source categories 

vary by emission inventory but often include household/

residential, industry, power generation, traffic/on-road 

vehicles, agricultural biomass burning, brick kilns, the more 

general category of all “anthropogenic” emissions, and 

dust (sometimes divided into crustal or anthropogenic). 

Each of these studies estimates exposure by weighting 

the distribution of pollutant concentrations by the 

population distribution in the country. 

Figure 2 depicts the percent of ambient PM
2.5 

that can be 

attributed to HAP as estimated by these studies. This range 

2 Lelieveld et al., 2015 includes the impact of both PM2.5 and O3 on 
premature mortality burden.

BOX 2: What is a chemical transport model (CTM) and what does it 
estimate? 
A chemical transport model (CTM) is a complex simulation of air quality that predicts pollutant concentrations 

for a given space and time using a set of inputs. These inputs include emissions, meteorological conditions, and 

chemical and physical processes. The model includes a set of numerical equations that simulate chemical reactions 

taking place in the atmosphere.

Chemical transport models can be classified as Eulerian or Lagrangian. Eulerian CTMs describe the composition of 

the atmosphere within a fixed space along which air flows. Lagrangian models describe the composition moving 

with the air flow. These models employ different methods of incorporating physical and chemical parameters 

such as precipitation microphysics, longwave and shortwave radiation, land surface classification, convective 

parameterization, gas-phase chemistry, photolysis, aerosols, natural dust inventory, initial and boundary conditions 

for chemistry, aerosols and meteorology. 

Chemical transport models can be characterized as global or regional models according to their processing extent. 

As simulating chemical transport models is computationally intensive and expensive, global chemical transport 

models are simulated at a coarse spatial resolution, and are often not able to account for changes in meteorology, 

topography etc. at a local scale. Regional chemical transport models, however, are simulated locally over a more 

limited geographic domain, often at higher spatial resolution.

of estimates can be hard to interpret for lay audiences 

and may lead to disagreement among policymakers on 

(1) where HAP control falls amongst other emissions 

control strategies and on (2) the magnitude of expected 

implications of PM control policies.  The next section will 

seek to clarify the sources of these differences. 

FIGURE 2: Contribution of HAP towards 
ambient PM

2.5
 as estimated by the seven 

studies. All estimates except Lelieveld and Butt 
are population-weighted. 
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3. Comparing existing estimates
This section explains the similarities and differences 

between the seven studies’ assessment of the contribution 

of HAP to ambient air pollution in India. We identify the 

seven studies as Chafe (Chafe et al., 2014), Lelieveld 

(Lelieveld et al., 2015), Butt (Butt et al., 2016), Silva (Silva 

et al., 2016), urbanemissions.info (urbanemisssions.info), 

MAPS (GBD- MAPS Working Group, 2018; Venkataraman 

et al., 2018), and Conibear (Conibear et al., 2018).

All seven studies use different CTMs with disparate 

emissions inventories, model configurations and 

meteorological inputs. This is not unusual, as air pollution 

models are developed by a variety of research groups 

and organizations to answer different questions, using 

different data inputs, over different time periods, and with 

different spatial resolutions. We note that the estimates 

presented in each of the studies would likely vary if the 

input data were changed or tweaked relative to the 

configuration used in the respective study. For example, 

if researchers coordinated meteorological inputs or 

defined emissions categories differently, the estimates 

of the contribution of  HAP to ambient air pollution 

would change. The magnitude of these changes is 

difficult to predict. Variability among the presented CTM 

results are distinct from model error, which occurs due 

to propagation of internal error in the model equations, 

error in the meteorological data, and error in formulations 

of emission inventory. It should also be noted that specific 

model configurations may make perfectly aligning input 

variables impossible to administer due to due to different 

spatial resolution, source classes, included species, etc.

Given the challenges in interpreting the findings from 

these seven studies, we detail below how changing each 

of the major driving factors could introduce variability 

among the estimates. It should be noted that these 

challenges prevail during inter-comparison of all the 

possible model outputs and is not entirely specific to 

estimation of the fraction contribution of HAP towards 

ambient PM
2.5

. These challenges call for large model inter-

comparison initiatives to detect the sensitivity of model 

inputs as in (Ding et al., 2017; Trombetti et al., 2018) or 

generation of cumulative ensemble from the wide range 

of variation in the estimated output variable (Meehl et 

al., 2000).

Model configuration and model type
The models used in the seven studies employ different 

methods of incorporating physical and chemical processes 

(see Box 2) necessary to predict time-varying PM
2.5

 

concentrations. Therefore, their performance depends on 

the choice of (1) simulation timestep, (2) horizontal and 

vertical resolutions of initial and boundary conditions 

for chemistry, aerosols and (3) meteorology. Most 

atmospheric CTMs underestimate PM
2.5

 concentrations 

over India, which necessitates correction using remote 

sensing and in-situ, locally-available ground-based data 

(Brauer et al., 2012; Chowdhury et al., 2018). 

Studies urbanemissions.info, MAPS and Conibear used 

regional CTMs. Regional CTMs are often optimized to 

suit local conditions better. Therefore, these three studies 

are expected to provide more accurate estimates of 

PM
2.5

 exposure for India; the relative share of HAP to 

ambient PM
2.5

 is thus expected to be different from 

Leileveld, Butt and Silva who use global CTMs’. However, 

this hypothesis needs to be verified for Indian conditions 

through rigorous inter-model comparison studies (Dore 

et al., 2015; Prank et al., 2016). On the other hand, aerosol 

transport across regions and geographic boundaries is 

better captured in the global CTMs (as used in Lelieveld, 

Butt and Silva) by virtue of their larger geographic extent. 

Limiting transport of pollution, as the regional models do, 

may lead to underestimation of ambient PM
2.5 

(thereby 

enhancing the relative share of HAP). 

It should be noted that choosing a different model 

of the same type as employed in the study will also 

introduce variability due to differences in how models 

are configured. Similarly, meteorological data (listed in 

Table 1) used in the models modulates the life-cycle of 

simulated aerosols (i.e. transport pattern, atmospheric 

processes and removal via wet and dry deposition). 

Changing the meteorological inputs would also change 

model estimates. This may be attributed to inter-annual 

variation of meteorological parameters and sources of 

meteorological data. For example, using meteorological 

parameters from two different years will provide two 

distinct outputs. Similarly, using meteorological inputs 

for the same year but from different data sources would 

provide different output. 

Each of the above-mentioned studies utilize emission 

inventories and meteorological data for different years, 
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which does not allow direct  comparison among the 

estimates. For example, Silva simulated their CTM using 

2005 meteorology and emission data while Conibear 

ran simulations using 2014 meteorology and 2010 

emission inventory. Direct comparison between these 

two studies would have to consider multiple factors, 

including the change in the population using solid fuel 

in India (from 73% to 62% between 2005 and 2010) and 

changes in meteorological factors like wind speed , mean 

temperature and relative humidity between 2005 and 

2010. 

Another major model property that may lead to varied 

results is the model grid size or horizontal resolution. 

Models that simulate at finer resolutions in higher detail 

are computationally intense, but allow more resolved 

analyses. For example, models that simulate at coarse 

resolutions are usually incapable of identifying pollution 

hotspots or the distribution of populations within urban 

regions, which may affect the mean of population-

weighted estimates. There are studies which indicate 

that the choice of model resolution may not necessarily 

be the leading cause of uncertainty(Lelieveld et al., 2015).

These uncertainties are not presented to undermine the 

utility or value of these models. Rather, we emphasize the 

relative consistency of estimates given the heterogeneity 

in emissions inventories, time scales, and geographic 

resolutions evaluated. The overall strength of the 

association indicates the importance of household 

sources as a contributor to ambient air pollution over 

India. 

Table 1 lists the horizontal resolution at which the models 

are simulated. Though the TM5 model used in Chafe is 

simulated at 1º x 1 º resolution the study reports results at 

regional (South Asia) level. As the results are population-

weighted, and India accounted for 77% of the South 

Asia regional population in 2010, the authors claim the 

fraction contribution of HAP towards ambient PM2.5 

in South Asia as indicative of the proportion for India.3   

Lelieveld applies a model grid of 1.1°, and aggregates 

emissions to this resolution from the global EDGAR 

inventory at 0.1° (~10km). Studies urbanemissions.

info and Conibear, which simulate at 25km x 25km and 

3 The countries included in South Asia regional grouping are 
Afghanistan, Bangladesh, Bhutan, India, Nepal, Pakistan. Population 
total for this region for 2010 was 1.591 billion. Proportion that lived 
in India was 77%, or 1.231 billion. The claims are verified by additional 
calculations undertaken for this review.

30km x 30km resolution respectively, are best equipped 

to capture the spatial heterogeneity in PM2.5 pollution 

and hence the heterogeneity in the contribution of HAP 

towards ambient PM2.5 levels.  

Emission Inventories
The selection of an emissions inventory plays a major role 

in determining how accurately models simulate ambient 

PM
2.5 

concentrations over the Indian region. Use of 

inventories which fail to incorporate detail of household 

activities (e.g. type and duration of solid fuel used in 

each household) in the Indian region may result in large 

uncertainty. There is also significant heterogeneity in 

how sources get categorized and grouped (discussed in 

more detail below). 

It is expected that the emission inventories designed 

in India (Pandey et al., 2014; Pandey and Venkataraman, 

2014; Sadavarte and Venkataraman, 2014)for research 

and regulatory applications including reporting to 

international conventions, needs treatment of detailed 

technology divisions and high-emitting technologies. 

Here we estimate Indian emissions, for 1996-2015, of 

aerosol constituents (PM2.5, BC and OC incorporate 

much finer detail than global emission inventories, which 

are not as explicit. For example, recent Indian inventories 

take into account space and water heating behaviors 

observed in parts of India where it has been assumed 

non-existent in other inventories. It is difficult to compare 

how different emission inventories perform over India 

until a single CTM is run  each of these, to estimate PM
2.5

 

and subsequently validate against in-situ measurement 

data. This is a massive task, well beyond the scope of this 

review. It will, however, be undertaken under National 

Carbonaceous Aerosol Program of MoEFCC (Ministry of 

Environment Forest and Climate Change).

The studies reviewed here used a variety of emissions 

inventories with different classifications of the residential 

sector. Some inventories, like those used in Lelieveld, 

Butt and Silva, use the term ‘residential and commercial 

sector,’ which defines HAP emissions to be originating 

both from households as well as from the commercial 

sector. They take into consideration that both of these 

types of activities use similar fuels for similar purposes. 

For example, Lelieveld uses an emissions inventory 

which includes small commercial combustion for 

space heating and cooking, diesel generator sets, and 
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biomass for uses other than cooking. These inclusions 

add about 5% more emissions on top of those from 

households. Similarly, the emission inventory used in 

Conibear for residential energy combines emissions 

from small scale supplemental engines for residential, 

commercial, agricultural, solid waste and wastewater 

treatment plants with emissions from households. The 

estimates from Lelieveld, Silva4, Butt and Conibear thus 

consider sources beyond household sources and tend 

to provide a higher estimate of contribution of HAP 

towards ambient PM
2.5

. 

In contrast, the estimates from Chafe, Urbanemissions, 

and MAPS focus more explicitly on household-level 

emissions. Chafe uses the cooking emissions only from 

the residential sector of the GAINS emission inventory 

and do not consider end uses from other household 

energy services.  Urbanemissions.info and MAPS use 

emissions inventories which include only conventional 

sources like cooking, water heating, space heating and 

lighting activities in the residential sector. . 

A detailed inter-emission inventory comparison may 

help better understand how these additional sources 

(besides the conventional household sources) impact 

estimates of the contribution of household emissions to 

ambient air pollution
5
. For example, the EDGAR HTAP_v2.2 

emission inventory used in the Conibear study has larger 

residential sector emissions than in MAPS : 1.2x higher 

PM
2.5

 emissions, 4x higher SO
2
 emission, 3x higher NO

x
 

emission and 1.3x higher NMVOC emission. This results 

in residential emission contributing to about 56% of total 

primary PM
2.5

 emissions as compared to 44% in MAPS.
 
 . 

4. Policy perspectives
Regardless of the variations in model types, 

configurations and the emission inventories used in 

the abovementioned seven studies, all of them identify 

residential emissions as a leading contributor to ambient 

PM
2.5

 in India, with a median estimate of 30%. Even the 

lowest estimate of the contribution of HAP to ambient air 

pollution indicates that household sources contribute 

to a significant portion of the large premature mortality 

burden from exposure from ambient air pollution. 

Across all studies, HAP contribution to premature 

mortality burden is (median (range)) 58% (38-83) higher 

4  Silva estimates ambient PM2.5 from anthropogenic sources and does 
not consider natural dust and sea salt. Thus, the fraction of HAP that 
they attribute to ambient PM2.5 is potentially exaggerated.

than that due to all coal use, 303% (248-372) higher than 

open burning, and 1056% (914-1245) higher than due 

to transportation in India (GBD-MAPS Working Group, 

2018). This is, as mentioned above, in addition to the risk 

households experience directly from the combustion of 

these fuels. Cleaning up household fuel use thus both 

directly benefits those exposed to HAP and has broader 

population benefits by reducing ambient air pollution.

These findings necessitate immediate action and 

demand formulation of extensive policies to reduce HAP. 

Starting in 2015, the Government of India (Ministry of 

Power, Government of India, 2014; Ministry of Petroleum 

and Natural Gas Government of India, 2016) embarked 

upon an ambitious program to tackle HAP, promoting 

use of liquefied petroleum gas (LPG) for cooking.  It will 

soon be possible to discern the impacts of this policy on 

outdoor air pollution levels in India using quantitative 

information from the government, but additional 

substitution of clean burning fuels for other residential 

uses like heating needs to be  warranted. In  states with 

low Socio-Demographic Index (SDI) like Bihar, Uttar 

Pradesh, Madhya Pradesh, Orissa, Jharkhand, Rajasthan, 

Chattisgarh and Assam where about 72.1% (71.1-73) of 

people use solid fuels for cooking (Balakrishnan et al., 

2019) and the annual ambient PM
2.5

 is around 125.3(87.5-

167.3)µg/m3(Balakrishnan et al., 2019) these mitigation 

programs are expected to harbor major health benefits. 

In addition, increased attention to enhancing usage of 

such fuels in addition to access may be needed(Smith, 

2018; Smith and Pillarisetti, 2017). 

There is value in continuing to explore methods to refine 

model output. Primary among these is the uncertainty 

in emission inventories (Li et al., 2017; Zhao et al., 2011), 

which we believe can be improved by gathering more 

refined energy service utilization data – for instance, 

better data on primary and secondary fuel use5 through 

the use of nationally representative surveys. These 

activities are being promoted globally through the World 

Health Organization’s efforts to harmonize household 

energy surveys6. Such activities will help add nuance to 

our understanding of energy use at more highly resolved 

spatial scales and contribute to more accurate emissions 

inventories, in addition to enabling better tracking 

5 Primary fuel indicates the major/dominant fuel used in the 
households (for cooking, heating and lighting), secondary fuel 
indicates the alternate fuel used for household purposes  

6  http://www.who.int/airpollution/household/harmonized-survey/en/
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of progress on meeting energy-related Sustainable 

Development Goals. 

Second, modelers may find value in comparing and 

refining CTM output. CTM output should be evaluated 

against available ground-based measurements to better 

understand their reliability. With respect to estimates of 

the contribution of HAP to ambient PM
2.5

, we cannot fully 

understand the effects of employing diverse modeling 

techniques  until simulation of multiple chemical transport 

models are performed with a single emission inventory. 

To understand the effect of emission inventories, a 

single atmospheric chemistry model should be run 

with each of the different emission inventory estimates.  

Running a single atmospheric chemistry model in this 

way would allow us to understand the role of emission 

inventories in arriving at the estimate of contribution of 

HAP towards ambient PM
2.5.

 Additionally, observational 

source apportionment studies should be used to validate 

the source apportionment information obtained from 

a CTM to obtain confidence on use of the CTM in such 

studies.. Furthermore, to tune the performance of the 

CTMs in estimating the contribution of HAP towards 

ambient PM
2.5

, emission inventories should be updated 

with subtle information at household level (like isolating 

household emissions by gathering data on primary and 

secondary fuel use at household level and focusing on 

better understanding energy use by household energy 

service), this must be formulated with help of national 

and representative surveys.  

MAPS depict spatial heterogeneity of contribution of 

HAP towards ambient PM
2.5. 

The study establishes that 

the percentage contribution of HAP towards ambient 

PM
2.5

 is higher in the eastern and north-eastern states 

of India like Bihar (~38%), West Bengal (~32%), Uttar 

Pradesh (~32%) and Assam (~30%) than in states in 

southern and western India like Telengana (~21%), Goa 

(~12%) and Gujarat (~10%). Overall, the large range (22%-

52%) of estimates of the contribution of HAP to ambient 

air pollution published in the 7 studies performed thus 

far  may be confusing for the policy makers to interpret. 

Put another way, consider a state in east  India, like West 

Bengal which has an annual PM
2.5

 exposure of 80µg/m3, 

if the policy makers target achieving the Indian Standard 

of 40µg/m3 and they adopt Conibear for framing their 

policies, then just mitigating the HAP by ensuring 100% 

clean fuel (like using cookstove powered by solar panels, 

we acknowledge that LPG usage may not result in zero 

household emission, however the introductory initiative 

in India is correctly undertaken by sheathing the solid fuel 

using community with LPG) use for household purposes 

would get the job done, but conversely if the policy 

makers adopt MAPS as the reference, just mitigating 

HAP would reduce the ambient PM
2.5 

exposure to 55µg/

m3
 
, which implies that subsequent mitigation measures 

should be applied to other sectors to achieve the goal 

of attaining the Indian Standard of 40µg/m3. Hence the 

range in these seven studies show that HAP should be 

a sector of great concern for policymakers intent on 

improving air quality in India, especially to obtain the 

Indian National Ambient Air Quality Standard of 40µg/

m3 or WHO-Interim Targets. As models and emissions 

inventories are refined, we suggest the median estimate 

from available studies, i.e. ~30%, as a reasonable overall 

estimate of the amount of ambient PM
2.5

 exposures that 

are due to household emissions in India.

As a next step, we call for energy, air pollution, and health 

researchers to harmonize the estimates of the contribution 

of HAP to ambient PM
2.5

 by collaborating on a publicly-

available, standard format for emissions inventories 

that quantifies sectoral emissions as consistently and as 

precisely as possible. Specifically, household emissions 

should be separated from commercial emissions, to the 

extent possible; and household emissions should then be 

further divided into emissions from household cooking, 

household heating, household lighting, and household 

water heating. Estimates should be internationally-

comparable and informed by both local data sources 

and by international data repositories and projections, 

such as those published by the International Energy 

Agency. Given that such a large proportion of India’s fine 

particulate air pollution originates from the daily use of 

solid fuels to cook food and heat homes, it is imperative 

that policymakers focus attention and resources on 

programs and strategies that will empower households 

to choose cleaner methods of meeting their basic energy 

needs. Seven studies have shown that household air 

pollution is a source of India’s particulate air pollution 

crisis that can no longer be downplayed or ignored. 

New policies are urgently needed to enable households 

to switch away from solid fuels and thus reduce the 

contribution of household air pollution to India’s ambient 

air pollution. 
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