

AIR QUALITY MONITORING

DEVELOPING AN AIR QUALITY MONITORING PROGRAM

SETTING THE OBJECTIVES

Air quality monitoring is an important component of an effective air quality management system carried out to have a better understanding of the status of air quality in a certain location (ADB & Clean Air Asia, 2014). The design and purpose of an air quality monitoring activity will determine: size and sophistication of the monitoring network (including equipment); location and number of sampling stations; duration and frequency of sampling; and, most importantly, the financial and manpower resources needed to operate and sustain the network (Clean Air Asia, 2016).

IDENTIFYING PARAMETERS FOR MONITORING

Pollutants for which standards or guideline values have been established are prioritized in monitoring. However, it is ideal to conduct a study to screen the pollutants that are relevant to the area (Schwela, 2010).

Station	Location	Station Type	Pollutants Monitored	Sampling Frequency	Ave Operation Days (per year)
DKI 1	Bundaran HI, Central Jakarta	Continuous, fixed	PM10, CO, O3, SO2, NO2, Met	30 minutes	356 days
DKI 2	Kelapa Gading, North Jakarta			30 minutes	356 days
DKI 3	Jagakarsa, South Jakarta			30 minutes	356 days
DKI 4	Museum Lubang Buaya, East Jakarta			30 minutes	356 days
DKI 5	Perumahan Kebon Jeruk, West Jakarta			30 minutes	356 days
JMS	BPLHD Office/ mobile	Mobile	PM10, CO, O3, SO2, NO2		
JIEP	Pt. Jiep, East Jakarta	Manual	TSP, SO2, NO2, Pb	24hrs/every 14 days	24 days
Ciracas	Ciracas, East Jakarta			24hrs/every 14 days	24 days
Kalideras	Kalideres, West Jakarta			24hrs/every 14 days	24 days
Istiqlal	Istiqlal, Central Jakarta			24hrs/every 14 days	24 days
Ancol	Dufan Ancol, North Jakarta			24hrs/every 14 days	24 days
KR Pela	Kr Pela, South Jakarta			24hrs/every 14 days	24 days
Cilingcing	Cilingcing, Central Jakarta			24hrs/twice a month	24 days
Kantor	Casablanca, South Jakarta			24hrs/twice a month	24 days
Tebet	Tebet, South Jakarta			24hrs/twice a month	24 days

DKI Jakarta Air Quality Monitoring Sites (as of May 2015)

IDENTIFYING SIZE AND LOCATION

Monitoring locations usually depend on the overall monitoring objectives, pollution sources and emissions, meteorology, topography, input from dispersion modeling and other inputs such as demographic and land use

information. The size and location of monitor stations

is important to ensure that the measurements taken are adequately representative of the air quality conditions of the area.

DKI 2in a residential area in North Jakarta

There are various technical guidelines for designing and operating an air quality monitoring program/network, including those from WHO, USEPA, and the EU (Clean Air Asia, 2016 – also see guidelines references below).

QUALITY ASSURANCE AND QUALITY CONTROL

Quality assurance (QA) and quality control (QC) protocols and procedures are established to ensure that the entire process of data collection and management will ultimately lead to valid and reliable data.

Activities in a QA/QC process	Elements covered		
	 Data quality objectives 		
	 Measurement methodology (reference methods) 		
Develop specifications for operating a monitoring network	 Equipment selection and operation 		
	 Site selection (site classification, distribution and location) 		
	 Sampling system (shelter requirements and probe siting) 		
Assess compliance to the developed	 Station and analyzer operation (station visits, ensuring that operation procedures are followed, and preventive maintenance) 		
procedures and calibration)	 Calibration (primary and secondary calibration standards, calibration frequency, calibration procedures, and zero and span verifications) 		
Implementing corrective actions to	 System audits and station performance (includes independent verifications) 		
ensure compliance to the developed	Data validation		
guidelines	 Documentation (log books and operation manuals) 		
	 Personnel training and technical support 		

Source: USEPA, 2013 and Watson et al., 2013

GOOD PRACTICES IN DKI JAKARTA AIR QUALITY MONITORING STATIONS

cords for internal audit in all continuous monitoring stations are in place.

ools, spare tubes and dried silica gel are available in case of immediate need for troubleshooting the analyzers.

air quality readings.

RECOMMENDATIONS FOR AIR QUALITY MONITORING IN DKI JAKARTA

ADDITION OF CONTINUOUS MONITORING STATIONS

DKI Jakarta's current air quality monitoring network five (5) continuous (monitoring PM₁₀, CO, O₃, SO₂, NO₂) and nine (9) manual monitoring stations are strategically situated in the different areas of the city: Central, North, East, and West Jakarta and represent traffic, residential, and industrial sites in the city.

Total land area of Jakarta: 664km²

Population: 9.6 million (2010 census)

Based on the National Technical Regulation on Selection of Ambient Air Quality Monitoring Stations in China (which considers both population and land area), the prescribed minimum number of monitoring stations for DKI Jakarta is 11 stations. If the city will move towards having the entire monitoring network with continuous stations, at least six (6) additional continuous monitoring stations are needed. The current siting already covers possible key sources of emissions and so manual sites can be converted to continuous monitoring stations.

ADDITION OF PM2.5 MONITORS

Monitoring PM_{2.5} is important because of its severe health impacts. Fine particulate matter is identified as the leading risk factor for noncommunicable diseases (NCDs), in particular, cancers, chronic obstructive pulmonary disease (COPD), asthma, ischemia, myocardial infarction, and stroke (World Health Organization, 2014). This is an important consideration because in recent years, air pollution-related diseases are among the top 10 leading causes of death and disability in the country (IHME, 2015).

DKI Jakarta recently added two PM_{2.5} monitors to their air quality monitoring

network and plans to gradually add more monitors following the results of the long-term analysis of PM₁₀ from each existing continuous monitoring sites and site representativeness. In the assessment recommendations, the priority sites are DKI 4 (residential, highest PM₁₀ design value), DKI 3 (residential/background), DKI 1 (roadside).

IMPROVEMENT OF QA/QC SYSTEM

Several improvements in QA/QC activities need to be implemented, such as: the protocol for procurement and maintenance of supply of calibration and span check gases to avoid the use of expired gases which may result in incorrect readings; an SOP for the calibration of O_3 analyzer using standard reference material is also necessary as the use of O_3 transfer standards may not give quantitative calibration information.

For more information on the assessment findings and recommendations, please refer to the full report: Air Quality Monitoring System Assessment Report and Recommendations for DKI Jakarta

Supported by: United States Environmental Protection Agency

Implementing partners:

REFERENCES

Asian Development Bank (ADB) & Clean Air Asia. (2014). Improving Air Quality Monitoring in Asia: A Good Practice Guidance. Mandaluyong City, Philippines: Authors.

Chow, J., Watson, & J., Tropp, R. (2012). Technical challenges in air quality monitoring: Quality control and quality assurance. [Presented at "Better Air Quality Symposium on Improving Air Quality Monitoring Systems in Asia"].

Clean Air Asia. (2016). Guidance Framework for Better Air Quality in Asian Cities. Pasig City, Philippines: Author.

Desert Research Institute (DRI), Clean Air Asia, Swisscontact Indonesia Foundation (SIF), Komite Penghapusan Bensin Bertimbel (KPBB). (2016). Air Quality Monitoring System Assessment Report and Recommendations for DKI Jakarta. [Document produced as part of the Breathe Easy Jakarta project].

Institute for Health Metrics and Evaluation (IHME). Top 10 causes of DALYs with key risk factors, 2015. Retrieved: http://www.healthdata.org/indonesia

Schwela, D. (2011). GAP Forum air pollution monitoring manual. Stockholm, Sweden: Stockholm Environment Institute. Retrieved from http://www.sei-international.org/rapidc/gapforum/html/technical/monitoring/GAP_Forum_Monitoring_Manual_2010.pdf

United States Environmental Protection Agency. (2013). Quality assurance handbook for air pollution measurement systems: Ambient Air Quality Monitoring Program (Vol. II). EPA-454/B-13-003. Retrieved from https://www3.epa.gov/ttnamti1/files/ambient/pm25/qa/QA-Handbook-Vol-II.pdf

Watson, J.G.; Chow, J.C.; Tropp, R.J.; Wang, X.L.; Kohl, S.D. & Chen, L.-W.A. (2013). Standards and traceability for air quality measurements: Flow rates and gaseous pollutants. Mapan-Journal of Metrology Society of India, 28(4):167-179. https://www.researchgate.net/publication/256409568_Standards_and_traceability_for_air_quality_measurements_Flow_rates_and_gase ous_pollutants?ev=prf_pub.

World Health Organization. (2014). Health and the environment – addressing the health impact of air pollution. Report by the Secretariat. EB 135/4

World Health Organization. (2008). The Global Burden of Disease: 2004 update. Retrieved: http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/