Simple Interactive Models for Better Air Quality

Road Transport in India 2010-30

Emissions, Pollution & Health Impacts

Dr. Sarath Guttikunda Ms. Puja Jawahar

November, 2012

Analysis & errors are sole responsibility of the authors.

© URBANEMISSIONS.info

Please send your questions and comments to sim-air@urbanemissions.info

This report is distributed for free and cite appropriately as

Guttikunda, S.K. and P. Jawahar, 2012. "Road Transport in India 2010-30: Emissions, Pollution, and Health Impacts", UrbanEmissions.Info (Ed.), New Delhi, India.

This study was supported by

New Delhi, India

Road Transport in India 2010-30: Emissions, Pollution & Health Impacts

Chapters	
Chapter Zero	3
On-Road Passenger Travel in India	7
On-Road Vehicle Fleet in India	11
Road Transport Emissions Outlook	17
Health Impacts of Road Transport Emissions	29

Key Figures

Ambient PM10 concentrations in Indian cities	2
On-road vehicle exhaust PM10 emissions (tons/square km) in 2010	6
Urban passenger modal shares in Indian cities	7
A comparison of passenger travel patterns in Indian cities	8
Share of registered vehicles in India in 2010	11
Total vehicle population in 2030 based on high and low sales projections	15
Estimated age mix of fleets based on total sales in 25 years	16
Shares in total GHG emissions and transport modes in India in 2007	17
Parameters included in the road transport emissions analysis	18
Estimated energy and emissions outlook for the road transport in India	21
Total emissions from road transport in India for year 2010	25
GIS layers of information used for spatial gridding of the emissions	27
Gridded emissions inventory at spatial resolution on 0.25° resolution	28
Eulerian dispersion model schematics and sample meteorological fields	32
Modeled PM ₁₀ concentration due to road transport emissions (by season)	33
Modeled annual average concentrations due to road transport emissions	34
Premature mortality per year due to road transport emissions	35
Sample sheets for State and City report	37

Key Tables

Total number of registered vehicles in India for 2010 by State	14
Summary of previous studies on road transport emissions	19
Summary of emission standards in India	20
Total emissions from road transport in India by State for 2010 (base year)	22
Total emissions from road transport in India by State for 2030 (business as usual)	23
Total emissions from road transport in India by State for 2030 (control scenario)	24
Total emissions from road transport in India by City for 2010 (base year)	25
Total emissions from road transport in India by City for 2030 (business as usual)	26
Total emissions from road transport in India by City for 2030 (control scenario)	26
Health impacts of road transport emissions in India	35

Road Transport, Emissions, Pollution, & Health Impacts

Chapter Zero

India is the 7th largest country in the world covering an area of 3.5 million km² and has a population of 1.2 billion. According to 2011 census figures, 30 percent of India's population lives in urban areas and the rate of urbanization is growing steadily due to the push/pull effects of employment opportunities and the declining viability of the agricultural sector. This, in addition to the fact that India now has the 4th largest economy in the world - \$4.463 trillion (2011 est.), has resulted in a large and growing movement of goods, services, and people fuelled by trade and employment opportunities – almost all of which is powered by fossil fuels.

India is a relatively "young" country. Of the population of 1.2 billion, 600 million are under 25 years old. With growing incomes and the need to travel on a regular basis, the demand for personal transportation is growing in India. The sales of domestically manufactured vehicles saw at least 15-percent increase per annum since 2008¹. A large part of the energy use in the transport sector (road and rail) is fueled by oil, the combustion of which releases toxic air pollutants and greenhouse gases (GHGs).

Current trends indicate that on-road vehicle movement is the major contributor to the growing air quality related problems at the urban level and carbon dioxide (CO₂) emissions at the national level. A study conducted by the Central Pollution Control Board (CPCB), New Delhi, India, in six cities – Delhi,

Kanpur, Bangalore, Pune, Chennai, and Mumbai, concluded that the transport sector contributes 30-50 percent to the ambient particulate pollution problems – either directly from the vehicle exhaust or indirectly via the resuspension of dust on roads due to vehicular movement². The share of transport emissions contributing to the ambient air quality ranges from 30-50 percent for most of the cities in Asia³.

¹ The vehicle sales information at the national level is obtained from Society of Indian Automobile Manufacturers @ <u>http://www.siamindia.com</u>

² A detailed report on the methodology, results, and supporting documents are available @ <u>http://cpcb.nic.in/Source_Apportionment_Studies.php</u>

³ Tools for Air Quality Management, ESMAP Publications, The World Bank (2011) @ <u>http://www.esmap.org/node/1159</u>

Exposure to pollutants such as particulates⁴ and ozone are responsible for negative health impacts⁵. An extensive epidemiological literature relates PM_{2.5} to adverse health impacts⁶. In epidemiologic cohort studies of long-term exposure (which form the basis of the exposure-response functions used in health impact assessment) PM_{2.5} is the most robust indicator of adverse (mortality) impacts⁷. WHO estimated a total 154,000 premature deaths due to outdoor air pollution in India.

In 2009, a study correlating the ambient concentrations of PM_{10} and hospital admissions, dubbed Delhi as the asthma capital of India. A study conducted by the University of California (Berkeley) suggested that the on-road exposure to air pollution is at least 1.5 times worse than the average ambient concentrations⁸.

In 2011, the World Health Organization (WHO) studied publicly available air quality data from 1100 cities, including cities with population of more than 100,000 people, and put many of the Indian cities in the top 100 cities with the worst air pollution⁹.

The range of the PM₁₀ concentrations

measured in 130 cities in India¹⁰ is presented in **Figure 2**; most of them exceeding the national ambient annual standard of $60 \,\mu\text{g/m}^3$. The standard for PM_{2.5} is $40 \,\mu\text{g/m}^3$.

⁴ Particulate Matter (PM) is also referred as dust or aerosols and two size fractions are listed as criteria pollutants. (a) $PM_{10} = PM$ with aerodynamic diameter < 10 μm (also known as coarse PM) and (b) $PM_{2.5} = PM$ with aerodynamic diameter < 2.5 μm (also known as fine PM). In India, $PM_{2.5}$ was added to the list of criteria pollutants in November, 2009.

⁵ Directory of resources on transport, health, and environment in the developing countries by WHO @ <u>http://www.who.int/heli/risks/urban/transpdirectory/en/index.html</u>

⁶ Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects, Special Report 17, published by the Health Effects Institute (USA)

[@] http://pubs.healtheffects.org

⁷ Brauer et al., "Global burden of disease attributable to outdoor air pollution", published in Environmental Science and Technology, 2012 @ <u>http://www.dx.doi.org/10.1021/es2025752</u>

⁸ Apte et al., "Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India" published in Atmospheric Environment, 2011

[@] http://www.sciencedirect.com/science/article/pii/S1352231011005206

⁹ Database of outdoor air pollution in world cities by World Health Organization (WHO) @ <u>http://www.who.int/phe/health_topics/outdoorair/databases/en/index.html</u>

¹⁰ Environmental Data Bank, operated by the CPCB, New Delhi, India

[@] http://cpcbedb.nic.in/

In India, three major factors are responsible for the increase in emissions from the transport sector

- (a) Urban population, an estimated 30 percent is concentrated in less than 5 percent of the land cover and the activity therein accounts for a large share of the national economy
- (b) The growing demand for mobility
- (c) The demand for goods, which is mostly met by road and rail transport

Growing industrial conglomerations and information technology parks, under the Special Economic Zone (SEZ) schemes have become hubs of economic activity in both tier 1 and tier 2 cities. For example, in Cochin city, the SEZ covers an estimated 103 acres of land and ~100 factories manufacturing ready-made garments, rubber gloves, electronic items, software, hardware, food items and jewelry. Besides the major cities like Delhi, Mumbai, Chennai, Kolkata, Bangalore, Hyderabad, and Ahmedabad, the secondary cities (with population more than 2 million) like Pune, Surat, Indore, Bhopal, Nagpur, Jaipur, Varanasi, Nagpur, Agra, Guwahati, Patna, Kanpur, Panaji, Trivandrum, and Cochin, are demanding personal and public transport, putting pressure on local infrastructure.

Figure 3: Number of cities in India and travel demand from the satellite cities in Delhi

The increasing geographic size of the cities also means greater travel between areas within the city. For example, once distant satellite cities to Delhi, NOIDA and Gurgaon have since become part of the Delhi administration, forming the National Capital Region (**Figure 3, top right**). On a daily basis, the travel into and out of Delhi to these cities account for nearly 30-40 percent of the passenger trips¹¹. Similarly, a large number of residential parks sanctioned in the cities of

¹¹ Surveys conducted by the Central Road Research Institute (CRRI), New Delhi, India @ <u>http://www.crridom.gov.in</u>

Hyderabad, Bangalore, Pune, Bhopal, and others, are located in what were once outskirts of the cities, resulting in a greater need for transport and infrastructure. The increase in traffic along with inadequate infrastructure facilities is adding to increasing road transport emissions in India.

According to energy scenarios developed by the US Energy Information Administration (EIA), India's transportation energy use will grow at about 5.5 percent a year – much higher than the world average of 1.4 percent per year¹². Through 2035, transport energy is expected to more than quadruple and with the highest demand coming from the passenger vehicles.

Increasing economic activity will necessitate large and recurring investments in cities. Cities need to integrate strong environmental policies at the planning stages itself, else the increase in pollution will be harder to address over time. Unfortunately, GHG emissions and their mitigation have remained low in terms of priorities of municipal agencies. Instead, a greater demand for action likely to result when the health impacts of the growing air pollution from the transport sector are illustrated (**Figure 2** and **Figure 4**). This is primarily due to two reasons

- 1. The regulatory bodies are more concerned about the criteria pollutants that they are mandated to regulate
- 2. While GHGs are responsible for climate change, the impacts of climate change are largely global and efforts to mitigate emissions at the local level do not have an urgency

Figure 4: On-road vehicle exhaust PM₁₀ emissions (Units: tons/square km) in 2010

While the message is clear; with the growing air pollution and GHG emissions from the transport sector in cities and at the national level, regulatory agencies will have to take a quantum leap, especially in terms of managing traffic in cities and freight at the state and the national level. They will have to implement radical solutions ranging from technical, social, policy, to economic, within a short time-frame for long-term gains. This study focuses on the energy and emissions outlook for the transport sector in India which could effectively result in a co-benefits framework for better air quality management in the cities and a national climate policy dialogue.

¹² "International Energy Outlook – Transportation Sector Energy Consumption, 2011", US EIA, Washington DC, USA @ <u>http://www.eia.gov/forecasts/ieo/transportation.cfm</u>

On-Road Passenger Travel in India

The demographic (a young workforce), economic and geographical conditions in India are ripe for the growth of the automobile manufacturing sector. The projected growth rate is upwards of 15 percent in the light-vehicle segment and commercial-vehicle segment during 2010-15. A summary of a survey (conducted in 2008) of passenger travel characteristics in Indian cities and their modal shares is presented in **Figure 5** and passenger travel behavior is presented in **Figure 6**¹³.

The cities are arranged in the descending order of the non-motorized transport (NMT) share and the number below each of the city's name represents its Tier. The megacities (light dots, referred as the Tier I cities, with population more than 5 million) perform poorly compared to the medium size cities (dark dots, referred as Tier II cities, with population between 2 and 5 million) and then the tertiary cities (squares, referred as Tier III cities, with population less than

¹³ "Traffic & Transportation Policies and Strategies in Urban India" The Ministry of Urban Development, The Government of India (2008) @ <u>http://urbanindia.nic.in/moud/theministry/ministryofurbandevelopment/main.htm</u>

2 million). The cities with the lowest service index are Delhi, Mumbai, Chennai, Hyderabad, Kolkata, Ahmedabad, and Bangalore.

Figure 6: A comparison of passenger travel patterns in the Indian cities

The panels present the relationship between the city population and city travel service index (defined as the percentage of work trips accessible in less than 15 minutes of travel time) and its relationship with various travel modes as the share of passenger trips. As the cities are

expanding geographically and in numbers, the need for motorized (self or public) transport is becoming imminent and the shares of NMT (walking and cycling) dwindling.

The correlation between commuter service index and the share of NMT is very strong, indicating a negative effect on urban mobility and accessibility. The current trends suggest that, as the cities graduate from Tier III to Tier I, the share of short trips, which are otherwise dominated by NMT mode, tend to decrease and get replaced by motorized transport. The correlation between the congestion index and the share of NMT trips clearly indicates this shift. NMT is the main mode of transport for more than 40 percent of commuter trips. A significant amount no doubt.

Additionally there is very little by way of numbers to capture the use of cycles in rural areas. The Census of India indicates that more people can now afford to own a cycle than ever before. In 2005, more than 40 percent of the Indian households own a bicycle. Unfortunately, those using cycles are not the power elite and their needs like cycle tracks and road safety are ignored. As the income of this strata increases, they most often move on to two-wheelers. This would obviously have an impact on transport emissions. To prevent this and to improve options for everyone in urban areas especially where trip lengths are very small – having a very real and concerted focus on NMT is crucial for cities – and it should be encouraged across all income groups and not just limited to the lower income sections.

The role of para-transit mode aka 3-wheeler auto-rickshaws and taxi services, cannot be ignored in urban India. The para-transit transport shares are small and tend to follow that of public transport; meaning as the cities are graduating from Tier III to Tier I, they do tend to put more emphasis on the public and para transport, by putting more buses on the road and/or by promoting the shared-transit systems like 3-wheelers, taxis, and other alternatives.

The access to the public transport is high in the Tier I cities and is expected to further grow under the JNNURM program¹⁴. In most of the cities, motorcycles are the dominant mode of transport, with vehicle shares as high as 70 percent in the Tier I and Tier II cities. This is the due to the availability of motorcycles (lower prices compared to cars and easy Bank loans) and lower operating costs (better mileage compared to cars, convenience of parking at most locations, and cheaper than public transport). It appears that public transport cannot attract these road users unless the fare structure is less than the marginal operating cost of using a motorcycle¹⁵. While, there is an increased awareness of need for more public transport facilities, the supply side has been weak. A lack of necessary infrastructure to manufacture and supply 70,000 buses under the JNNURM program is hindering an aggressive promotion of public transport in the Tier II and Tier III cities.

¹⁴ The Jawaharlal Nehru National Urban Renewable Mission (JNNURM) under the Ministry of Urban Development, The Government of India @ <u>http://jnnurm.nic.in</u>

¹⁵ Mythologies, Metro Rail Systems and Future Urban Transport, published in Economic & Political Weekly, 2008 @ <u>http://www.epw.in/special-articles/mythologies-metro-rail-systems-and-future-urban-transport.html</u>

In the public transport sector, the Bus Rapid Transit systems (BRT) are the current flavor of the day as far as urban transport policy is concerned. The idea of a BRT system is that by allowing buses to ply on dedicated "bus-lanes", travel times of those using buses would reduce, thus providing an incentive for people to use public transport. Like most policies however, it is not a simple matter of only providing a bus lane. For it to be successful, one needs to have adequate busses, proper design of bus stops and routes, and most importantly – enforcement of bus lane use so that other vehicles do not use it and cause congestion. Several BRT systems in addition have a NMT component (walking/cycling lanes) and enforcement and maintenance of these is also necessary. The most common citation for a successful BRT system was that of the city of Bogota in Columbia. In India, Pune, Delhi and Ahmedabad have tried, rather unsuccessfully to implement BRT systems on large scale. The lack of success is due to a combination of factors, including – lack of enforcement, lack of busses, lack of maintenance of the bus fleet, bad design of routes, and a lack of a multipronged effort to improve public transport and NMT infrastructure concurrently.

Box: Road Network in India

India has the 3rd largest road network with 3.3 million km of road, including 650 km of expressways, 67,000 km of national highways, 132,000 km of state and trunk highways, 468,000 km of major district roads, and more than 2.6 million km of rural and other roads. Roadways are integral to transport in the country and are the main method for movement of freight, with 40 percent of the villages in India lacking access to all-weather roads and remain isolated during the monsoon season. The National Highways Authority of India (NHAI) is the principle government body responsible for the upkeep of roads and has in the recent years undertaken a series of large scale infrastructure projects to increase the network of existing highways. According to NHAI, the national highways account for about 1.7 percent of the road network, many of which are linked to major economic and population centers, carry about 40

percent of the total traffic, supports 65 percent of freight movement, and 80 percent of the passenger traffic in the country. This has grown from 15.4 percent for passenger traffic and 13.8 percent of freight traffic in 1950 (Annual report of MoRTH).

The Golden Quadrilateral is thus far the largest highway project in India. It is named such because it is a network of highways that connects the 4 main metropolises of India - Delhi, Mumbai, Chennai and Kolkata, along with other cities such as Bangalore, Pune, Ahmedabad, and Surat. It was completed in January 2012 at a cost of INR 600 billion. Although the highway accounts for just two percent of the country's total road infrastructure, it carries 40 percent of the total national traffic.

On-Road Vehicle Fleet in India

The total registered vehicle fleet in India is 112 million in 2010¹⁶. The shares of cars, multi-utility vehicles (MUVs), taxis, 2-wheelers (2Ws), 3-wheelers, buses, heavy duty trucks (HDT), light duty trucks (LDT), and others including tractors, is presented in the following Tables and Figures. In **Figure 7** and **Table 1**, the category 2Ws includes 2-stroke and 4-stroke scooters, mopeds, and motorcycles, 4Ws include cars, MUVs, and taxies, BUS includes public transport, state carriage, and long haul buses, and OTH includes tractors and other vehicles, for all fuel types.

Motorized two-wheelers like scooters, small capacity motorcycles and mopeds are very popular due to their cost, fuel efficiency and ease of use in congested traffic¹⁷. All the vehicles (motorized and non-motorized) are utilized for multiple purposes, for both passenger and freight transport, varying loading conditions, at all terrains from high altitude Kashmir to the plains of Tamilnadu and Kerala.

The demand for transportation services outstrips the supply of options in most parts of the country. The main reason for this is economic - people have to make do with available transport modes in most cases - be it a growing family, who still use a twowheeler or travelers who hitch a ride on any available locomotive contraption to go between villages.

¹⁶ Annual report (2009) published by the Ministry of Road Transport and Highways (MoRTH), the Government of India, New Delhi, India @ <u>http://morth.nic.in/showfile.asp?lid=839</u>

¹⁷ The vehicle sales information at the national level is obtained from Society of Indian Automobile Manufacturers @ <u>http://www.siamindia.com</u>

Examples of On-road transport in India¹⁸

¹⁸ All the pictures are obtained from flickr's open-source portal and should not be used for any commercial publication without the photographer's permission

Non-motorized transport is an invisible fleet category in India - these may include hand carts, cycles, and horse/camel/cow carts. In urban and rural areas freight in the form of vegetables, electronics, and construction material, is transported by NMT. These trip lengths are on average shorter than those using motorized transport. Although they do not release emissions themselves, they do share road space with other transport categories and we would like to acknowledge their contribution to the movement of goods and people.

Two-wheeler scooters and motorcycles are the most economically viable personal transport vehicle. Fuel in India is not inexpensive, and hence the fuel economy and convenience of negotiating traffic are major advantages of using them. While rules regarding the number of people traveling on them are present - especially in cities - they are often ignored. It is not unusual to have 2 or more persons riding a two-wheeler, which is meant for only 2 people.

Negotiating tiny by-lanes and weaving through traffic is the main advantage of the threewheeler light-duty passenger vehicles. These form an integral part of movement in the cities – for passengers, freight, and when in session catering to the schools in the cities. Three wheelers are also used as the para-transit systems in areas that are served by metros (in cities like Mumbai, Kolkata, Delhi, and Chennai). Smaller towns usually operate six-seater vehicles that provide services similar to mini-buses (by plying a dominant route - into town for example). Emissions from these vehicles are a significant contributor to air pollution. In response to this, the Delhi Government mandated the conversion of the entire fleet of autos to CNG in early 2000, followed by similar initiatives in other cities to supplement the fuel with CNG or LPG.

Trucks are the main mode of transport of freight between cities, across the country, especially from the ports - on roads that may be less than optimal. The large heavy duty container trucks (more than 20 tons) are now available in India, servicing from the ports to the cities, which was largely serviced by the 12-16 ton trucks. Most of the cities in India have a moratorium on the heavy duty vehicles from entering the city limits between 6 AM and 9 PM, which was introduce to reduce the possible congestion on the roads and to reduce exposure to harmful diesel fumes during the daytime. This also led to higher proportion of the light-duty trucks and three-wheelers catering for freight movement during the daytime.

The towns and cities in the Himalayas are entirely serviced by trucks - for every product including fuel. The trucks running these routes in the spring, summer, and fall months are often driven in the lowest gear under full load conditions, which tend to exacerbate the emission and pollution levels in these areas.

An often overlooked mode of transportation, especially in rural areas, is that provided by tractors. These heavy duty vehicles are able to cover regions with mud roads and with a wagon hitched at the back have enough horse power to haul significant loads. They are used to also haul non-agricultural products such as bricks from brick kilns (located most often on fields), mud, gravel and sand for construction, agricultural waste etc.

Table 1: Total number of registered vehicles in India for 2010 by State							
	2W	3W	4W	BUS	LDT	HDT	Total
STATES							
Andhra Pradesh	2,571,000	97,500	860,500	29,000	101,500	709,000	7,851,000
Arunachal Pradesh	232,500	4,000	140,000	5,500	50,500	69,500	24,000
Assam	337,500	26,500	192,000	24,000	26,500	60,500	1,225,000
Bihar	1,458,500	68,500	288,500	11,500	66,500	147,500	2,040,000
Chattishgarh	4,454,500	328,500	1,156,500	111,500	191,000	532,000	2,012,000
Goa	2,426,000	596,500	1,049,500	91,000	342,000	131,500	653,000
Gujarat	4,356,500	81,000	456,500	31,000	72,000	752,000	10,720,000
Haryana	9,483,500	795,000	2,482,000	95,000	493,000	935,500	4,369,000
Himachal Pradesh	98,000	5,500	30,000	4,000	2,500	10,000	502,000
Jammu & Kashmir	42,500	6,500	71,500	4,000	6,000	24,500	667,000
Jharkhand	30,000	3,000	31,500	1,000	6,000	6,000	2,041,000
Karnataka	48,500	17,500	99,500	5,500	23,500	72,000	6,774,000
Kerala	1,906,500	66,500	221,000	21,500	86,000	214,000	4,637,000
Madhya Pradesh	3,326,500	71,500	571,000	25,000	25,000	636,000	5,749,000
Maharashtra	4,379,500	137,500	815,500	67,500	140,000	818,000	14,284,000
Manipur	6,000	-	22,000	2,000	1,000	3,000	150,000
Meghalaya	9,493,500	286,500	1,439,500	130,500	340,000	661,500	155,000
Mizoram	79,500	23,000	21,000	2,500	10,000	15,000	78,000
Nagaland	530,000	17,000	128,500	6,000	19,500	62,000	267,000
Orissa	7,913,000	140,000	1,086,500	44,500	128,000	1,037,000	2,516,000
Punjab	1,873,500	56,500	653,000	34,000	9,500	315,500	4,655,000
Rajasthan	2,571,000	97,500	860,500	29,000	101,500	709,000	6,358,000
Sikkim	232,500	4,000	140,000	5,500	50,500	69,500	34,000
Tamil Nadu	337,500	26,500	192,000	24,000	26,500	60,500	12,352,000
Tripura	1,458,500	68,500	288,500	11,500	66,500	147,500	151,000
Uttarakhand	4,454,500	328,500	1,156,500	111,500	191,000	532,000	763,000
Uttar Pradesh	2,426,000	596,500	1,049,500	91,000	342,000	131,500	10,349,000
West Bengal	4,356,500	81,000	456,500	31,000	72,000	752,000	2,942,000
UNION TERRITORYS							
Andaman & Nicobar	39,500	4,000	13,500	1,000	500	3,000	62,000
Chandigarh	475,500	3,000	230,000	2,500	10,000	2,000	723,000
Dadra & Nagar Haveli	33,000	1,000	18,000	500	2,500	8,000	63,000
Daman & Diu	40,000	2,000	20,000	500	3,500	3,500	70,000
Delhi	3,572,500	239,000	2,065,000	126,500	124,500	90,000	6,218,000
Lakshadweep	5,500	500	500	500	1,000	500	9,000
Puducherry	403,500	7,000	76,500	5,500	11,000	14,000	518,000
TOTAL	76,600,000	4,400,000	17,300,000	1,200,000	3,100,000	9,700,000	112,000,000

All the numbers are rounded to nearest 500.

The 22 cities are analyzed separately, as subsets of their respective state totals. The city travel characteristics are generally different from those observed in the remainder of the country.

While the total vehicle numbers have increased significantly between 1990 and 2010, the per capita rate of ownership of private cars in India is still lower than many of the European Nations, United States, and Canada. As incomes rise, car ownership will increase proportionately and consequently the total emissions and pollution. The proportion of 4-wheelers (including taxis) is 30 percent higher in the cities compared to the national averages. We estimate that the total fleet will increase four to five folds by 2030, based on high and low sales growth scenarios. For the high scenario we assumed that the current trend in the sales will persist with no additional programs for curtailing the sales. In the low sales growth scenario, we assumed acceleration of urban transport planning in the cities, which includes an aggressive promotion of public and non-motorized transport. We expect these measures to be policy, institutional, and economical in nature, which will affect growth in the passenger vehicle sales. In 2030, the total vehicle fleet size is expected to be 16 percent lower under accelerated urban transport planning.

Figure 8: Total vehicle population in 2030 under high and low sales projections

The projections in vehicle sales do not include any technological advances in the engines and expected changes in emission standards in the future years. Both the sales projections are estimated "what-if" scenarios. Under the business as usual scenario, the sales growth is maintained from 10 percent per year tapering to 6 percent by 2030, for passenger vehicles. Under lower sales growth, the rates are tapered to 3 percent starting in 2015. We did not change the anticipated sales for the commercial vehicles (LDT, HDT, Tractors, and Others) between the scenarios.

The age mix of the vehicles is corroborated with the information on national vehicle sales from the Society of Indian Automobile Manufacturers (SIAM, New Delhi, India) and average age of the vehicles on-road, which was deduced from surveys conducted by the Transport Research and Injury Prevention Program (TRIPP) at the Indian Institute of Technology (New Delhi, India). The surveys included data from "pollution under check" program in India and physical surveys at the petrol stations in Delhi. In **Figure 9**, the age mix of the vehicles is presented for the period of 2010 and 2030, based on all vehicle sales (current and projected) in the last 25 years, for each corresponding year. It is not necessary that the vehicles as old as 25 years are running on the road, but this is an indication of possible vehicle mix on the road.

Figure 9: Estimated age mix of fleet based on total vehicle sales in 25 years (current and projected – business as usual scenario)

Road Transport Emissions Outlook

The road transport and aviation sectors account for 4.5 percent of India's gross national product (GDP) and the total transport sector accounts for 7.5 percent of total GHG emissions¹⁹. The INCCA report for 2007, estimated 142 million tons of CO₂e including emissions from road transport, aviation, rail, and port activity (**Figure 10**). The total commercial energy consumption includes diesel, petrol, coal, kerosene, aviation turbine fuel (ATF), compressed natural gas (CNG), liquefied petroleum gas (LPG), and others. Diesel comprises of the 65 percent of total energy demand in the road transport sector, followed by petrol (24%) and ATF (7%).

Figure 10: Shares of total GHG emissions and transport modes in India in 2007

The major economic and population centers have at least doubled their administrative boundaries between 1990 and 2010. This, combined with increasing incomes, has been the impetus for exponential increase in vehicle sales, congestion rates, air pollutant and GHG emissions, and ambient pollution levels. Other emissions related to road transport (such as those from resuspended road dust, and wear of tyres and brake linings) are also an important source of the coarse fraction of PM.

¹⁹ The Indian Greenhouse Gas Emissions Report for 2007, published by the Indian Network for Climate Change Assessment (INCCA), Ministry of Environment and Forests, May 2010.

A listless mix of application of vehicles – to move people and freight, under varying loading conditions, and a vibrant age mix in the on-road vehicle fleet presents a challenging task for estimating the total emissions at the national, state, and city level.

The emissions inventory is built for the following pollutants – particulates in two bins (PM₁₀, PM_{2.5}), sulfur dioxide (SO₂), nitrogen oxides (NOx), carbon monoxide (CO), volatile organic compounds (VOC), black carbon (BC), and Carbon Dioxide (CO₂).

We utilized the ASIF methodology²⁰ to calculate vehicle exhaust emissions. In this method, the parameters are defined in terms of total travel activity (NV), modal shares (S) by mode in vehicle-km traveled (VKT) and appropriate emission factor (EF) in mass pollutant emitted per vehicle-km travelled.

This translates to

$$E_{s,c,v,f,g,p} = \sum_{s,c} \left\{ NV_{v,g} * S_{f} * VKT_{v,g} * EF_{v,f,g,p} \right\}$$

Where

 $E_{s,c,v,f,g,p}$ denotes total emissions by pollutant, calculated by state, city, vehicle type, fuel type, and by age. The total emissions are calculated at the state and city (as a subset of state) level, and then aggregating to the national level

 $NV_{v,g}$ stands for total number of vehicles on-road by vehicle types and by age. It is assumed 60-70 percent of the registered fleet is considered on-road per year. The vehicle numbers by age is deduced from the vehicle sales at the national level

 ${m S}_f$ stands for share of vehicles on-road by fuel type for each vehicle type

 $VKT_{v,g}$ stands for annual average vehicle kilometers traveled by vehicle type and by age. It is assumed that annual vehicle usage reduces by age for all categories²¹

²⁰ Schipper, L., Marie-Lilliu, C., Gorham, R., 2000. "Flexing the link between transport and greenhouse gas emissions: A path for the World Bank", International Energy Agency, Paris, France.

²¹ Ekbordin and Tami et al

 $EF_{v,f,g,p}$ stands for fleet average emission rate by vehicle type, fuel type, age group, and by pollutant

Table 2: Summary of previous studies on road transport emissions							
	Study year	Pollutants covered	Calculation method				
ADB, 2006	2005	PM	3				
Bidya an Broken, 2009	2005	PM, NOx, CO, SO2, VOC, CO2	3				
Garg et al., 2006	2005, 2000, 1995, 1990	PM, NOx, CO, SO2, CO2	1				
Fulton and Eads, 2004	2005	PM, NOx, CO, SO2, VOC, CO2	2				
IIASA, 2008	2005, 2000, 1995, 1990	PM, NOx, SO2, CO2	1				
Van Ardenne et al., 2005	2000	NOx, CO, SO2, VOC, CO2	1				
Singh et al.,2008	2000, 1980	NOx, CO, VOC, CO2	1				
Borken et al. 2007	2000	PM, NOx, CO, SO2, VOC, CO2	2				
OHara et al, 2007	2000	NOx, CO, SO2, VOC, CO2	1				
Mittal and Sharma 2003	1997	PM, CO, SO2, VOC, CO2	2				
Oliver et al, 2002	1995, 1990	NOx, CO, SO2, VOC, CO2	1				
Ramanathan & Parikh, 1999	1994	PM, CO, VOC, CO2	2				
MiEF, 2004	1994	CO2	1				
Bhattacharya & Mitra, 1998	1994, 1990	CO, VOC, CO2	1V				
Sahu et al., 2012	1990-2000	NOx	3				
This work 2010-30 PM, NOx, CO, SO2, VOC, BC, CO2 3							
This table is reproduced from Bidya and Broken (2009) with permission from Broken (IIASA) Method: 1 - fuel consumption and total roads; 1V - fuel consumption and vehicle category; 2 – Vehicle kilometer and vehicle category: 3 - vehicle kilometer and vehicle sub category.							

s = state; c= city; v = vehicle; f = fuel; g = age group; p = pollutant

The average VKT and average trip lengths by mode are estimated from passenger travel surveys conducted for the Ministry of Urban Transport and secondary sources from literature review. The age mix of on-road vehicles (presented in **Figure 9**) was supplemented with data from the "pollution under check" (PUC) program, under which all passenger and para-transit vehicles are required to undergo emission tests and receive an inspection and maintenance certificate. We did not utilize the emission rate results from PUC tests, as they are based on free-acceleration tests conducted along the road-side for compliance and do not include a full driving cycle. We used emission factors for the Indian vehicle fleet by CPCB (2010) and integrated with DIESEL (2008) and GAINS (2010)²². For the projected years, a gradual introduction of newer emission standards is assumed between 2014 and 2030, which will affect the emission rate for older fleet for all passenger and freight vehicles is also assumed²³.

 ²² CPCB (2010) – Vehicular source emission factors and profiles, Central Pollution Control Board (India)
<u>http://cpcb.nic.in/Source_Apportionment_Studies.php</u>

GAINS (2010) - Greenhouse Gas and Air Pollution Interactions and Synergies , IIASA (Austria) @ <u>http://gains.iiasa.ac.at/index.php/home-page</u>

DIESEL (2008) – Developing integrated emission strategies for existing land-transport, PCD (Thailand) & The World Bank (USA) @ <u>http://cleanairinitiative.org/portal/projects/DIESEL</u>

²³ Based on the results presented by ARAI (Pune, India), as part of CPCB's source apportionment and emissions inventory studies in six Indian cities @ <u>http://cpcb.nic.in/Source_Apportionment_Studies.php</u>

In India, vehicle emission standards exist for hydrocarbons (HC), NO_x, CO and in the case of diesel fueled vehicles, PM. Vehicle standards were mandated as late in year 2010 - in response to the recommendations by the Mashelkar committee²⁴. The Bharat Standards are based on the Euro standards for vehicle emissions, except for 2 and 3 wheelers (standards of which are based on standards unique to the Indian context). Bharat IV standards were initially mandated for 13 cities, while the rest of the country had to comply with Bharat III standards. Over time more cities have been added to the Bharat IV list and is set to go up to 50 cities by 2015. However, with differing standards and fuel qualities, vehicles that are designed for higher standards will emit more pollution if fueled with a lower quality fuel. Given the large-scale movement of commercial vehicles in particular - this poses a genuine problem. The sulfur content in fuel in India is higher than international standards and is on par with that of China (150 ppm for petrol, 350 ppm for diesel). In addition, adulteration of fuel is a significant issue that has a major impact on air pollution²⁵.

Table 3: Summary of emission standards in India (g/kwh)									
	Bharat 3	Bharat 3 Bharat 4 Bharat 5 Bharat 6							
		CO/NOx/HC/PM/HC+NOx							
LDV Petrol	2.3/0.15/0.2/-/-	1.0/0.08/0.1/-/-	1.0/0.06/0.1/0.005/-	1.0/0.06/0.1/0.005/-					
LDV Diesel	0.64/0.5/-/0.1/0.56	0.5/0.25/-/0.025/0.3	0.5/0.18/-/0.005/0.23	0.5/0.08/-/0.0045/0.17					
HDV Diesel	2.1/0.5/0.66/0.1/-	1.5/3.5/0.46/0.02/-	1.5/2.0/0.46/0.02/-	1.5/0.4/0.13/0.01/-					
2-Wheelers	1.0/-/-/1.0	-/-/-/-	-/-/-/-	-/-/-/-					
3-Wheelers Petrol	1.25/-/-/1.25	-/-/-/-	-/-/-/-	-/-/-/-					
3-Wheelers Diesel	0.5/-/-/0.5/0.5	-/-/-/-	-/-/-/-	-/-/-/-					

A summary of results from business as usual and assumed "what-if" scenarios is presented in **Figure 12** for each of the pollutants. A summary of the total emissions by state is presented in **Table 4** for 2010, **Table 5** for 2030 business as usual, and **Table 6** for one of the scenarios for 2030 which includes assumed lower sales projection, advanced emission standards, and an aggressive urban transport policy.

Emissions from the transport sector are a result of multiple factors - including but not limited to, vehicle fuel standards, badly maintained roads and public transport vehicles, lack of transportation options and urban planning, adulterated fuel, aging fleet, and freight movement. There cannot be a silver bullet to address this issue and one cannot have an impact on emissions from transport using only one policy instrument. For instance improving vehicle standards by itself will not reduce pollution, unless it is accompanied by a host of other complementing policies.

 ²⁴ Auto Fuel Policy report by Mashelkar Committee, the Government of India
<u>http://petroleum.nic.in/autopolicy.pdf</u>

 ²⁵ A full summary of evolution of emission standards and comparisons to developed countries is presented by ICCT (2012) – Contact: Dr. Micahel Walsh: <u>MPWALSH@igc.org</u>

Figure 12: Estimated energy and emissions outlook for the road transport in India

The scenarios are designated as follows: (a) BAU = business as usual growth rate and no change in the emission standards (b) LSP = lower sales projection and no change in the emission standards (c) LE4-15 = lower sales projection with Bharat 4 standards for all vehicles by 2015 for all states (d) LE5-15 = lower sales projection with Bharat 5 standards for all vehicles by 2015 for all states (e) LE5-20 = lower sales projection with Bharat 5 standards for all vehicles by 2020 for all states (a delayed introduction of the standards) (f) LE4E5 = lower sales projection with Bharat 4 enforced in 2015and Bharat 5 standards introduced in 2020 for all vehicles and for all states (g) BUPT25 = business as usual with no change in emission standards, with an aggressive urban passenger transport policy to promote public transport and NMT, in order to reduce 25 percent of the vehicle km traveled from passenger vehicles (h) LE5-15UPT = lower sales projections with introduction of Bharat 5 standards by 2015 and an aggressive urban passenger transport policy.

Table 4: Total emissions from road transport in India by State								
for 2010 (base year)								
	PM2.5	SO2	NOx	СО	VOC	CO2	BC	
STATES								
Andhra Pradesh	19,380	1,550	224,740	278,830	130,700	18.7	4,580	
Arunachal Pradesh	130	20	2,090	1,620	570	0.2	40	
Assam	5,110	770	90,570	69,540	27,280	6.5	1,640	
Bihar	5,240	520	71,030	75,110	32,870	5.2	1,450	
Chattishgarh	5,120	700	85,910	67,850	36,580	5.8	1,510	
Goa	1,860	270	29,690	26,330	11,940	2.3	550	
Gujarat	23,330	2,200	276,450	345,740	169,470	22.5	5,680	
Haryana	12,640	1,760	221,540	178,310	77,680	14.9	3,910	
Himachal Pradesh	2,010	360	38,040	28,770	9,950	3.0	710	
Jammu and Kashmir	2,630	390	44,260	34,860	13,050	3.4	860	
Jharkhand	6,100	860	93,910	85,680	39,210	7.2	1,780	
Karnataka	16,160	1,380	217,470	237,050	107,180	17.7	4,350	
Kerala	15,910	1,330	123,030	211,930	78,750	13.4	3,700	
Madhya Pradesh	9,620	700	130,400	143,330	84,900	8.8	2,400	
Maharashtra	33,690	3,210	379,440	490,800	226,810	32.8	8,210	
Manipur	490	70	7,520	6,350	2,810	0.6	150	
Meghalaya	870	150	16,430	11,730	3,610	1.2	310	
Mizoram	250	40	3,330	3,650	1,130	0.4	80	
Nagaland	2,190	390	45,060	28,800	8,880	3.2	800	
Orissa	6,480	850	94,340	90,340	45,330	7.2	1,810	
Punjab	9,220	970	143,800	133,650	73,380	9.3	2,490	
Rajasthan	14,530	1,530	213,540	203,520	101,920	15.1	4,050	
Sikkim	170	40	3,010	2,330	580	0.3	70	
Tamil Nadu	25,500	2,690	346,180	375,120	199,790	28.5	6,590	
Tripura	720	80	8,400	9,150	3,420	0.7	190	
Uttarakhand	1,540	190	19,850	22,810	11,590	1.6	410	
Uttar Pradesh	15,910	1,350	192,030	240,420	149,120	13.7	3,570	
West Bengal	9,620	1,400	186,560	136,980	59,030	12.9	3,150	
UNION TERRITORYS								
Andaman & Nicobar	180	20	2,210	2,380	1,080	0.2	50	
Chandigarh	680	70	4,820	13,660	7,990	0.7	110	
Dadra & Nagar Haveli	260	50	5,430	3,690	1,420	0.4	90	
Daman & Diu	170	30	2,510	2,500	1,070	0.3	50	
Delhi	7,910	150	59,200	166,590	65,550	10.9	1,120	
Lakshadweep	20	10	90	220	110	0.1	10	
Puducherry	830	100	9,240	12,470	7,550	0.9	190	
Total	256,270	26,040	3,391,940	3,741,910	1,792,120	268.8	66,490	

All totals in tons/year, except for CO2 in million tons/year

Year 2010 is considered the base year for all the calculations presented in this report. The emission projection data is available for all the intermediate years between 2010 and 2030, but not presented in this report. This is available up on request.

Table 5: Total emissions from road transport in India by State								
for 2030 Business as usual scenario								
	PM2.5	SO2	NOx	СО	VOC	CO2	BC	
STATES								
Andhra Pradesh	47,670	4,580	546,250	596,970	243,600	60.6	6,500	
Arunachal Pradesh	240	60	5,450	3,580	1,130	0.5	70	
Assam	9,400	2,170	227,710	154,760	53,280	18.9	2,190	
Bihar	12,100	1,640	168,300	153,190	61,600	17.2	2,100	
Chattishgarh	13,330	2,040	215,160	163,010	71,930	17.7	2,540	
Goa	4,170	760	75,660	63,810	23,480	7.0	800	
Gujarat	59,470	6,850	666,190	748,160	317,730	76.8	8,130	
Haryana	25,720	5,240	530,940	417,340	149,340	46.6	5,160	
Himachal Pradesh	3,490	1,030	95,120	63,790	19,810	8.8	930	
Jammu and Kashmir	5,600	1,160	115,990	82,880	26,740	10.4	1,460	
Jharkhand	13,240	2,560	234,420	189,210	75,090	22.2	2,370	
Karnataka	42,190	4,220	557,300	552,380	210,440	58.7	7,560	
Kerala	36,020	4,710	340,200	400,750	143,950	49.4	6,450	
Madhya Pradesh	27,920	2,070	290,900	334,550	159,570	29.1	3,460	
Maharashtra	83,300	10,730	947,980	1,085,300	427,140	116.6	12,270	
Manipur	1,180	230	20,070	15,500	5,690	2.0	260	
Meghalaya	1,430	440	41,980	26,760	7,400	3.7	440	
Mizoram	490	140	8,690	8,010	2,230	1.2	120	
Nagaland	3,140	1,080	114,060	62,170	17,930	9.0	1,030	
Orissa	15,550	2,550	232,690	198,290	86,240	22.2	2,560	
Punjab	23,740	2,970	334,500	326,660	139,680	30.3	3,450	
Rajasthan	36,790	4,900	516,560	473,190	195,550	50.8	6,350	
Sikkim	310	100	7,930	5,450	1,290	0.9	110	
Tamil Nadu	71,190	8,140	883,480	901,550	388,940	92.9	10,700	
Tripura	1,360	240	21,780	16,600	6,230	2.2	270	
Uttarakhand	3,980	570	48,110	54,070	22,070	5.4	590	
Uttar Pradesh	49,030	4,600	434,170	596,130	280,800	50.7	5,370	
West Bengal	19,700	3,810	469,260	338,360	118,540	37.7	4,380	
UNION TERRITORYS								
Andaman & Nicobar	420	70	5,830	5,570	2,090	0.7	80	
Chandigarh	2,700	280	12,660	46,090	15,920	3.6	230	
Dadra & Nagar Haveli	440	130	13,540	8,920	2,840	1.1	120	
Daman & Diu	380	80	6,350	6,380	2,110	0.7	70	
Delhi	27,200	690	158,170	498,490	132,750	46.5	1,990	
Lakshadweep	50	10	250	380	200	0.1	10	
Puducherry	2,690	320	24,310	33,390	14,750	3.1	350	
Total	645,440	80,980	8,371,770	8,631,480	3,427,870	903.5	100,320	

All totals in tons/year, except for CO2 in million tons/year

Year 2010 is considered the base year for all the calculations presented in this report. The emission projection data is available for all the intermediate years between 2010 and 2030, but not presented in this report. This is available up on request.

Table 6: Total emissions from road transport in India by State								
for 2030 LE5-15UPT scenario (best feasible scenario to reach levels of 2010)								
	PM2.5	SO2	NOx	со	VOC	CO2	BC	
STATES								
Andhra Pradesh	19,840	2,880	331,130	266,390	99,840	36.4	3,580	
Arunachal Pradesh	120	40	3,340	1,820	580	0.3	40	
Assam	4,590	1,420	143,390	79,550	26,680	12.0	1,310	
Bihar	5,180	990	101,780	69,770	26,340	10.1	1,160	
Chattishgarh	6,050	1,350	133,440	79,600	31,740	11.5	1,510	
Goa	1,880	490	46,960	29,940	10,610	4.3	470	
Gujarat	24,060	4,170	401,120	321,030	127,850	44.3	4,430	
Haryana	11,790	3,280	331,980	201,410	69,850	28.1	3,040	
Himachal Pradesh	1,780	670	59,750	33,020	10,300	5.6	560	
Jammu and Kashmir	2,780	770	70,890	40,640	13,110	6.7	850	
Jharkhand	5,830	1,610	146,270	91,290	33,810	13.6	1,370	
Karnataka	18,410	2,690	333,160	243,690	88,410	35.6	4,230	
Kerala	15,020	2,800	188,490	163,240	57,660	28.5	3,250	
Madhya Pradesh	11,130	1,260	177,390	143,150	62,570	16.7	1,950	
Maharashtra	33,810	6,300	561,960	458,290	172,760	66.0	6,480	
Manipur	540	140	12,100	7,290	2,590	1.2	150	
Meghalaya	750	280	26,060	13,860	4,080	2.3	260	
Mizoram	220	80	5,070	3,520	1,030	0.7	70	
Nagaland	1,760	710	72,320	35,160	10,610	5.8	630	
Orissa	6,700	1,610	144,400	93,880	37,190	13.7	1,480	
Punjab	9,880	1,810	207,240	146,090	58,350	17.7	2,000	
Rajasthan	15,740	2,970	313,570	213,520	82,750	30.0	3,560	
Sikkim	170	60	4,740	2,660	710	0.5	60	
Tamil Nadu	29,870	5,170	537,910	399,080	159,100	56.4	6,080	
Tripura	610	150	13,250	8,070	2,890	1.4	150	
Uttarakhand	1,630	350	29,120	23,060	8,940	3.1	330	
Uttar Pradesh	18,790	2,610	259,680	240,440	106,360	27.6	2,900	
West Bengal	9,530	2,550	296,060	169,810	57,670	24.0	2,670	
UNION TERRITORYS								
Andaman & Nicobar	180	40	3,490	2,450	900	0.4	40	
Chandigarh	950	140	6,120	14,960	5,340	1.7	110	
Dadra & Nagar Haveli	230	90	8,660	4,680	1,500	0.7	70	
Daman & Diu	170	50	3,890	2,800	930	0.5	40	
Delhi	10,500	330	80,520	188,070	46,170	25.0	840	
Lakshadweep	20	10	140	150	70	0.1	10	
Puducherry	1,060	200	14,270	13,280	5,590	1.8	190	
Total	271,400	49,910	5,069,500	3,805,510	1,424,710	532.8	55,710	

All totals in tons/year, except for CO2 in million tons/year

Year 2010 is considered the base year for all the calculations presented in this report. The emission projection data is available for all the intermediate years between 2010 and 2030, but not presented in this report. This is available up on request.

It is assumed that the actual emissions in 2030 could be anywhere between the red line (BAU) and the dotted black line (LE5-15UPT) in **Figure 12**.

Figure 13: Total emissions from road transport in India for year 2010

2W = 2-wheelers; 3W = wheelers; 4W = 4-wheelers including cars and jeeps; HDT = heavy duty trucks; LDT = light duty trucks; OTH = others including tractors and multi-utility vehicles

PM2.5SO2NOxCOVOCCO2BBSTATES	Table 7: Total emissions from road transport in India by City for 2010 (base year)							
STATESImage: constraint of the state of the s	BC							
Ahmedabad2,2904518,43040,55021,5402.240Bengaluru5,79017075,05097,49039,9007.31,Bhopal720156,26012,8007,7600.713Chennai5,07015065,81082,57038,4706.31,Coimbatore940155,11018,01012,1700.913Delhi7,91013559,200166,59065,55010.91,Hyderabad3,9709034,66074,22031,9205.466Indore1,6505021,84025,68013,9901.943Jaipur2,4607534,66036,51019,4202.866Kochi780309,74011,2503,5701.223Kokata1,1204018,99021,9905,9801.836Lucknow1,060258,00018,68012,4901.011Ludhiana9803518,07015,9105,1801.432Mumbai2,4305520,76051,31017,4703.156Nagpur1,2403011,23020,12013,2901.223Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.755Surat1,120205,								
Bengaluru5,79017075,05097,49039,9007.31,Bhopal720156,26012,8007,7600.713Chennai5,07015065,81082,57038,4706.31,Coimbatore940155,11018,01012,1700.913Delhi7,91013559,200166,59065,55010.91,Hyderabad3,9709034,66074,22031,9205.466Indore1,6505021,84025,68013,9901.943Jaipur2,4607534,66036,51019,4202.866Kanpur8802510,63014,0608,7501.019Kochi780309,74011,2503,5701.223Kolkata1,1204018,99021,9905,9801.836Lucknow1,060258,00018,68012,4901.017Ludhiana9803518,07015,9105,1801.433Mumbai2,4305520,76051,31017,4703.156Nagpur1,2403011,23020,12013,2901.223Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.755Surat1,120205,680 </td <td>400</td>	400							
Bhopal720156,26012,8007,7600.713Chennai5,07015065,81082,57038,4706.31,Coimbatore940155,11018,01012,1700.912Delhi7,91013559,200166,59065,55010.91,Hyderabad3,9709034,66074,22031,9205.466Indore1,6505021,84025,68013,9901.943Jaipur2,4607534,66036,51019,4202.866Kanpur8802510,63014,0608,7501.019Kochi780309,74011,2503,5701.223Kolkata1,1204018,99021,9905,9801.836Lucknow1,060258,00018,68012,4901.017Ludhiana9803518,07015,9105,1801.432Mumbai2,4305520,76051,31017,4703.156Nagpur1,2403011,23020,12013,2901.223Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.753Surat1,120205,68021,51013,0800.913Vadodara1,2503011,040 <td>1,530</td>	1,530							
Chennai5,07015065,81082,57038,4706.31,Coimbatore940155,11018,01012,1700.913Delhi7,91013559,200166,59065,55010.91,Hyderabad3,9709034,66074,22031,9205.466Indore1,6505021,84025,68013,9901.943Jaipur2,4607534,66036,51019,4202.866Kanpur8802510,63014,0608,7501.012Kochi780309,74011,2503,5701.223Kolkata1,1204018,99021,9905,9801.836Lucknow1,060258,00018,68012,4901.017Ludhiana9803518,07015,9105,1801.432Mumbai2,4305520,76051,31017,4703.156Nagpur1,2403011,23020,12013,2901.223Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.753Surat1,120205,68021,51013,0800.913Vadodara1,2503011,04022,13013,1301.224	130							
Coimbatore940155,11018,01012,1700.912Delhi7,91013559,200166,59065,55010.91,Hyderabad3,9709034,66074,22031,9205.466Indore1,6505021,84025,68013,9901.943Jaipur2,4607534,66036,51019,4202.866Kanpur8802510,63014,0608,7501.019Kochi780309,74011,2503,5701.223Kolkata1,1204018,99021,9905,9801.836Lucknow1,060258,00018,68012,4901.017Ludhiana9803518,07015,9105,1801.432Mumbai2,4305520,76051,31017,4703.156Nagpur1,2403011,23020,12013,2901.223Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.753Surat1,120205,68021,51013,0800.913Vadodara1,2503011,04022,13013,1301.224	1,280							
Delhi7,91013559,200166,59065,55010.91,Hyderabad3,9709034,66074,22031,9205.466Indore1,6505021,84025,68013,9901.943Jaipur2,4607534,66036,51019,4202.866Kanpur8802510,63014,0608,7501.019Kochi780309,74011,2503,5701.223Kolkata1,1204018,99021,9905,9801.836Lucknow1,060258,00018,68012,4901.017Ludhiana9803518,07015,9105,1801.432Magpur1,2403011,23020,12013,2901.223Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.753Surat1,120205,68021,51013,0800.913Vadodara1,2503011,04022,13013,1301.224	110							
Hyderabad3,9709034,66074,22031,9205.466Indore1,6505021,84025,68013,9901.943Jaipur2,4607534,66036,51019,4202.866Kanpur8802510,63014,0608,7501.019Kochi780309,74011,2503,5701.223Kolkata1,1204018,99021,9905,9801.836Lucknow1,060258,00018,68012,4901.017Ludhiana9803518,07015,9105,1801.432Mumbai2,4305520,76051,31017,4703.156Nagpur1,2403011,23020,12013,2901.223Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.753Surat1,120205,68021,51013,0800.913Vadodara1,2503011,04022,13013,1301.224	1,120							
Indore1,6505021,84025,68013,9901.943Jaipur2,4607534,66036,51019,4202.866Kanpur8802510,63014,0608,7501.019Kochi780309,74011,2503,5701.223Kolkata1,1204018,99021,9905,9801.836Lucknow1,060258,00018,68012,4901.017Ludhiana9803518,07015,9105,1801.432Mumbai2,4305520,76051,31017,4703.156Nagpur1,2403011,23020,12013,2901.223Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.753Surat1,120205,68021,51013,0800.913Vadodara1,2503011,04022,13013,1301.224	690							
Jaipur2,4607534,66036,51019,4202.866Kanpur8802510,63014,0608,7501.019Kochi780309,74011,2503,5701.223Kolkata1,1204018,99021,9905,9801.836Lucknow1,060258,00018,68012,4901.017Ludhiana9803518,07015,9105,1801.432Mumbai2,4305520,76051,31017,4703.156Nagpur1,2403011,23020,12013,2901.223Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.755Surat1,120205,68021,51013,0800.913Vadodara1,2503011,04022,13013,1301.224	430							
Kanpur8802510,63014,0608,7501.019Kochi780309,74011,2503,5701.223Kolkata1,1204018,99021,9905,9801.836Lucknow1,060258,00018,68012,4901.017Ludhiana9803518,07015,9105,1801.432Mumbai2,4305520,76051,31017,4703.156Nagpur1,2403011,23020,12013,2901.223Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.753Surat1,120205,68021,51013,0800.913Vadodara1,2503011,04022,13013,1301.224	660							
Kochi780309,74011,2503,5701.222Kolkata1,1204018,99021,9905,9801.836Lucknow1,060258,00018,68012,4901.017Ludhiana9803518,07015,9105,1801.432Mumbai2,4305520,76051,31017,4703.150Nagpur1,2403011,23020,12013,2901.222Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.753Surat1,120205,68021,51013,0800.913Vadodara1,2503011,04022,13013,1301.224	190							
Kolkata1,1204018,99021,9905,9801.836Lucknow1,060258,00018,68012,4901.017Ludhiana9803518,07015,9105,1801.432Mumbai2,4305520,76051,31017,4703.150Nagpur1,2403011,23020,12013,2901.223Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.753Surat1,120205,68021,51013,0800.913Vadodara1,2503011,04022,13013,1301.224	230							
Lucknow1,060258,00018,68012,4901.017Ludhiana9803518,07015,9105,1801.432Mumbai2,4305520,76051,31017,4703.150Nagpur1,2403011,23020,12013,2901.222Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.753Surat1,120205,68021,51013,0800.913Vadodara1,2503011,04022,13013,1301.224	360							
Ludhiana9803518,07015,9105,1801.432Mumbai2,4305520,76051,31017,4703.150Nagpur1,2403011,23020,12013,2901.223Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.753Surat1,120205,68021,51013,0800.913Vadodara1,2503011,04022,13013,1301.224	170							
Mumbai2,4305520,76051,31017,4703.150Nagpur1,2403011,23020,12013,2901.223Patna1,0102512,55017,2407,3601.124Pune2,0607026,04029,97015,3902.753Surat1,120205,68021,51013,0800.913Vadodara1,2503011,04022,13013,1301.224	320							
Nagpur 1,240 30 11,230 20,120 13,290 1.2 23 Patna 1,010 25 12,550 17,240 7,360 1.1 24 Pune 2,060 70 26,040 29,970 15,390 2.7 53 Surat 1,120 20 5,680 21,510 13,080 0.9 13 Vadodara 1,250 30 11,040 22,130 13,130 1.2 22	500							
Patna 1,010 25 12,550 17,240 7,360 1.1 24 Pune 2,060 70 26,040 29,970 15,390 2.7 53 Surat 1,120 20 5,680 21,510 13,080 0.9 13 Vadodara 1,250 30 11,040 22,130 13,130 1.2 22	230							
Pune 2,060 70 26,040 29,970 15,390 2.7 53 Surat 1,120 20 5,680 21,510 13,080 0.9 13 Vadodara 1,250 30 11,040 22,130 13,130 1.2 22	240							
Surat 1,120 20 5,680 21,510 13,080 0.9 13 Vadodara 1,250 30 11,040 22,130 13,130 1.2 22	530							
Vadodara 1,250 30 11,040 22,130 13,130 1.2 22	130							
	220							
Varanasi 620 15 6,220 9,930 6,880 0.6 12	120							
Vishakapatnam 780 20 7,750 13,320 7,550 0.8 16	160							
Total 46,030 1,120 487,630 821,740 380,760 55.3 9,	9,640							

All totals in tons/year, except for CO2 in million tons/year

Table 8: Total emissions from road transport in India by City for 2030 (business as usual)								
	PM2.5	SO2	NOx	со	VOC	CO2	BC	
STATES								
Ahmedabad	8,630	175	53,500	102,540	43,350	9.2	990	
Bengaluru	17,260	540	204,080	246,510	82,570	25.7	3,110	
Bhopal	2,730	55	15,960	33,540	15,110	2.8	250	
Chennai	15,780	485	179,120	217,360	78,860	22.2	2,610	
Coimbatore	4,030	65	12,310	50,710	23,290	3.9	190	
Delhi	27,200	595	158,170	498,490	132,750	46.5	1,990	
Hyderabad	12,530	300	87,140	187,250	62,040	19.5	970	
Indore	4,980	155	55,560	64,760	27,610	6.4	710	
Jaipur	7,880	265	94,460	101,330	39,940	10.6	1,410	
Kanpur	3,050	85	27,800	38,930	17,300	3.6	360	
Kochi	2,260	90	28,750	28,300	8,040	4.0	550	
Kolkata	2,530	130	49,980	65,790	13,390	6.5	610	
Lucknow	4,340	90	21,080	54,030	24,460	4.4	370	
Ludhiana	1,940	110	44,710	41,940	10,800	4.7	470	
Mumbai	7,550	210	57,620	133,020	36,150	13.0	960	
Nagpur	4,790	115	30,490	54,750	26,120	5.0	500	
Patna	2,910	80	33,100	37,480	14,840	3.7	440	
Pune	6,400	220	70,780	77,420	31,160	9.3	1,070	
Surat	4,550	70	15,380	52,060	25,340	4.1	280	
Vadodara	4,600	100	28,960	55,830	25,660	4.8	420	
Varanasi	2,330	50	15,320	26,170	13,270	2.2	220	
Vishakapatnam	2,750	65	20,750	32,660	14,890	2.9	310	
Total	150,930	4,000	1,304,910	2,200,750	766,810	213.8	18,680	
All totals in tons/year, except for CO2 in million tons/year								

Table 9: Total emissions from road transport in India by City for 2030 (LE5-15UPT)							
	PM2.5	SO2	NOx	со	VOC	CO2	BC
STATES							
Ahmedabad	3,300	105	28,250	37,420	15,390	5.0	510
Bengaluru	7,510	350	117,560	101,930	33,410	15.2	1,710
Bhopal	1,010	35	8,840	12,410	5,340	1.5	130
Chennai	6,730	310	104,110	89,620	31,440	13.1	1,450
Coimbatore	1,390	35	6,150	17,750	7,750	2.0	80
Delhi	10,500	290	80,520	188,070	46,170	25.0	840
Hyderabad	5,030	175	49,750	76,660	22,810	11.4	490
Indore	2,030	100	33,280	27,200	10,920	3.7	400
Jaipur	3,330	165	54,940	41,900	16,060	6.1	770
Kanpur	1,190	50	16,430	15,510	6,550	2.0	200
Kochi	1,100	60	16,070	11,960	3,480	2.5	300
Kolkata	1,170	80	29,030	26,100	5,980	3.6	340
Lucknow	1,540	50	10,990	18,650	8,390	2.2	180
Ludhiana	920	70	27,110	18,400	5,170	2.7	270
Mumbai	2,920	115	29,180	47,770	13,000	6.7	450
Nagpur	1,780	65	16,830	20,170	9,310	2.6	250
Patna	1,210	50	19,390	15,680	5,970	2.1	250
Pune	2,760	140	41,410	32,520	12,480	5.6	600
Surat	1,570	35	7,430	17,640	8,490	2.0	120
Vadodara	1,700	60	16,270	20,780	9,180	2.6	210
Varanasi	870	30	8,860	9,960	4,790	1.2	120
Vishakapatnam	1,060	40	11,840	12,610	5,480	1.6	160
Total	60,510	2,350	734,130	860,600	287,440	119.4	9,720
All totals in tons/year, except for CO2 in million tons/year							

The total emissions are further gridded from state and city totals to a spatial resolution of 0.25 degree resolution and an area covering 32 degree in longitude and 32 degree in latitude. The layers of information utilized for gridding these emissions is presented in **Figure 14**. The layers of information includes (a) gridded population at 0.25 degree resolution (b) gridded road density maps for highways, trunk roads, and arterial roads (inter and intra city) (c) activity maps like ports and airports, which are hot spots to freight movement (d) urban center locations, which are hot spots to the passenger travel (e) landuse maps to distinguish between populated, agricultural, mining, and forest areas for designated spatial apportionment of the emissions. Gridded emissions are presented in **Figure 15**.

Figure 14: Layers of information used for spatial gridding of the emissions

Highways and Arterial Road Network

Gridded Population at 0.25° resolution

Major ports, highways, and rail lines

Figure 15: Gridded emissions inventory at spatial resolution of 0.25° resolution

All the maps are presented for the same color scale. The NO_x and CO emissions are traditionally higher from the vehicle exhaust followed by PM and SO_2 . The gridded emissions fields are also available for other scenarios which fall between these two scenarios, but not presented in this report. The intensity of the emissions in 2030 and beyond is expected to increase surrounding the urban centers due to the growing passenger travel demand and along the highways due to the growing freight movement between and to the cities.

Health Impacts of Road Transport Emissions

Estimating the health impacts of road transport emissions can be tricky for several reasons; transport accounts for about 30 percent of emissions and overall ambient concentrations in the Indian cities²⁶, and hence isolating transport sources by itself is tricky and the impacts of air pollution can be indirect on health and manifest itself in non-respiratory impacts that are hard to account for.

Air pollution disproportionately affects vulnerable those most _ with compromised or still developing immune systems - the sick, elderly and children. In India, those with means travel in cars and use air conditioning indoors, which to a small extent insulates them from chronic exposure to the pollutants. However, people who are directly exposed to pollution on road corridors, or those living along roads bear the brunt of the air pollution. That said, several studies have looked at this issue in

Figure 16: Severity of on-road exposure²⁷

particular²⁸ based on extensive epidemiological and cohort studies to better understand the relationships between ambient PM pollution and various health end points. Drawing from these

 $^{^{26}}$ A composite of the studies conducted by the Central Pollution Control Board (New Delhi, India) in six cities, for total $\rm PM_{10}$ ambient pollution

[@] http://cpcb.nic.in/Source Apportionment Studies.php

²⁷ Full video is available @ http://www.youtube.com/watch?v=JNHhGVeD050

and full report of the study is available @ <u>http://www.ocf.berkeley.edu/~apte/research_dl.html</u>

 ²⁸ Brauer et al., "Global burden of disease attributable to outdoor air pollution", published in Env. Sci. & Tech, 2012
<u>http://www.dx.doi.org/10.1021/es2025752</u>

Directory of resources on transport, health, and environment in the developing countries by WHO @ http://www.who.int/heli/risks/urban/transpdirectory/en/index.html

Health effects of transport related air pollution (2005) published by WHO @ http://www.euro.who.int/en/what-we-publish/abstracts/health-effects-of-transport-related-air-pollution

Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects, Special Report 17, published by the Health Effects Institute (USA) @ <u>http://pubs.healtheffects.org</u>

studies, we use their dose-response functions to estimate the mortality and morbidity impacts on air pollution from road transport in India.

Health impact analysis estimates premature mortality and morbidity as a result of outdoor air pollution, using concentration-response functions. However, this is not as easy to calculate and in all likelihood is a gross underestimate that captures only the direct impacts of air pollution (respiratory illness, allergies etc.). The indirect impacts of exposure to pollutants are many - an increase in inflammation, cardiac conditions, decrease in fertility, cancer, premature birth, among others. We estimate the health impacts (mortality and morbidity) of baseline and future scenarios, using the following the methodology

$\delta E = \beta * \delta C * \delta P$

where.

- δE = number of estimated health effects (various end points for mortality and morbidity)
- meta = the concentration-response function; which is defined as the change in number of cases per unit change in concentrations per capita. This is established based on epidemiological studies conducted over a period of time, analyzing the trends in hospital records and air pollution monitoring
- $\partial \mathcal{C}$ = the change in concentrations; although, the World Health Organization claims that there is no threshold over which the health impacts are measured. In this study, since we are evaluating pollution from transport emissions only, no threshold value is assumed

 δP = the population exposed to the incremental concentration; defined as the vulnerable population, of age more than 17 years, who spend more time outdoors. This spatial spread of population is obtained from GRUMP (2010) and Census-India (2011).

The concentration-response function (β) (CRF) is defined as the change in number of cases per unit change in concentrations per capita. Health effects range from minor irritation in eyes and upper respiratory system to chronic respiratory disease, heart disease, lung cancer, and lead up to premature death. In case of mortality, CRF is set to 0.225% per 10 µg/m³ increase in the PM_{10} concentrations (HEI, 2010) as the lower bound²⁹ and 0.6% per 10 µg/m³ increase in the PM_{10} concentrations (WHO, 2005) as the higher bound³⁰; the total death incidence rate of 241 per 1,000 people was adjusted for the those due to lower and upper respiratory illnesses (including bronchitis and asthma) and cardio vascular diseases. Among the reported number of deaths, these causes account for 15 percent of the annual death rate (DoES, 2010)³¹. We also

²⁹ Public Health and Air Pollution in Asia (PAPA): A Multicity Study of Short-Term Effects of Air Pollution on Mortality. Health Effects Institute (2010) @ http://pubs.healtheffects.org/view.php?id=348

³⁰ Health effects of transport related air pollution (2005) published by WHO

[@] http://www.euro.who.int/en/what-we-publish/abstracts/health-effects-of-transport-related-air-pollution

³¹ Annual Report (2010) on "Registration of Births and Deaths in India". Directorate of Economics and Statistics, the Government of Delhi, New Delhi, India.

estimate morbidity in terms of asthma cases, chronic bronchitis, hospital admissions, and work days lost.

The following assumptions are applied in this study (a) that the concentration-response to changing air pollution among residents is similar to those of residents where the epidemiological studies were performed (b) that the population baseline health status in various states is similar to those observed at the national level (CBHI, 2010)³² and (c) that the public health status of people in year 2030 remains the same as in year 2010. CRF's for mortality and morbidity are summarized in **Table 10**.

Table 10: Concentration-response functions (in effects per capita per $\mu g/m^3$			
change in PM concentrations)			
Health impact	Effects/capita/(µg/m ³)		
Premature mortality (lower bound)	0.000083		
Premature mortality (higher bound)	0.0000220		
Adult Chronic Bronchitis	0.00004		
Child Acute Bronchitis	0.000544		
Respiratory Hospital Admission	0.000012		
Cardiac Hospital Admission	0.000005		
Emergency Room Visit	0.000235		
Asthma Attacks	0.0029		
Restricted Activity Days	0.03828		
Respiratory Symptom Days	0.183		

The population exposed (δP) is defined as the total population exposed to the incremental concentrations (δC) in each grid cell. The grid level population is estimated using GRUMP (2010) and Census-India (2012) and presented in **Figure 14**. The population data and the concentrations of PM₁₀ are available at 0.25° resolution.

Particulate Concentration Maps

We used the Comprehensive Air Quality Model with Extensions (CAMx), which is an Eulerian photochemical dispersion model that allows for integrated assessments of gaseous and particulate air pollution over many scales ranging from sub-urban to continental. This model is designed to unify all of the technical features required of "state-of-the-science" air quality models into a single open-source system that is computationally efficient, easy to use, and publicly available³³. For the analysis of the road transport emissions in India, the CAMx model is set up to model the concentrations for the domain ranging from 7° to 39° in latitudes and 37° to 99° in longitudes at 0.25° resolution. The vertical resolution of the model extends to 12km stretched over 23 layers. The removal processes in the model include dry deposition varying

³² National Health Profile (2010), Central Bureau of Health Intelligence (CBHI), the Government of India, New Delhi, India @ <u>http://www.cbhidghs.nic.in</u>

³³ The CAMx model source code, support systems, manuals, and test cases are available for download @ <u>http://www.camx.com/about/default.aspx</u>

with the landuse patterns and wet deposition due to predominant meteorological conditions. The schematics of the Eulerian modeling system and the model domain are presented **Figure 17**.

The meteorological data (3D wind, temperature, and pressure, as well as surface heat flux and precipitation fields) is derived from the National Center for Environmental Prediction (NCEP) global reanalysis³⁴. The NCEP databases are available for the period of 1948 to 2012. We selected 2010 as the base year and the required data fields are processed for this year. The same meteorology for 2010 is used for all the future scenarios. The NCEP global meteorological fields are processed through the RAMS meteorological model (version 6.0)³⁵ and the data is available at 2 hour interval for the parameters necessary to run the CAMx dispersion model³⁶.

Figure 17: 3D-Eulerian dispersion model schematics and sample of meteorological fields

³⁴ The meteorological fields are available for free

[@] http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html

³⁵ The RAMS v6.0 model source code, support systems, manuals, and test cases are available for download @ <u>http://www.atmet.com</u>

³⁶ All the animations are available @ <u>http://www.urbanemissions.info/india-meteorology</u>

Figure 18: Modeled PM₁₀ concentration (in $\mu g/m^3$)due to road transport emissions (by season)

The total PM_{10} concentrations presented in **Figure 18** includes both the coarse and fine fractions ($PM_{2.5}$) and secondary contributions from SO₂ and NO_x emissions. Since, the SO₂ emissions from road transport are very small compared to sectors like power plant and industries, where coal combustion is predominant, the secondary contributions in the transport sector are small.

The concentration maps under the BAU scenario are presented in this report. The same is also available for LE5-15UPT, the most feasible scenario with the highest benefits – which is expected to drop the concentrations in 2030 to the levels of 2010.

The incremental change in the annual average $PM_{2.5}$ concentrations (δC) utilized for the final health impacts analysis. To avoid double counting of health impacts, all the health impacts are calculated for $PM_{2.5}$ fraction only, which includes the secondary contributions from SO₂ and NO_x emissions.

The PM concentrations are modeled in two bins for two reasons (a) most of the measurements available in India are for PM_{10} and this fraction is still the default benchmark for regulatory purposes. Only a handful of cities measure $PM_{2.5}$, even though it is now designated as a criteria pollutant (since November 2009) (b) the epidemiological studies conducted and currently underway are still using PM_{10} as the key indicator, partly due to the reason stated above. For comparative purposes, annual averages for PM_{10} and $PM_{2.5}$ are presented in **Figure 19**. In general, the $PM_{2.5}$ concentrations calculated are 75 percent of the total PM_{10} concentrations.

Figure 19: Modeled annual average concentrations due to road transport emissions

For the percent change maps, the highs of 200 percent over the mountainous Northern territory and the western desert regions, where very limited road transport is present, is a mathematical anomaly and the actual concentrations are very small. The scenario LE5-15UPT is assumed to put the emissions and pollution levels in 2030 back at 2010 levels (blue shades in the last panel).

For all emissions (besides road transport), the national annual average standard for $PM_{2.5}$ is 40 $\mu g/m^3$, for PM_{10} is 60 $\mu g/m^3$. The WHO guideline for $PM_{2.5}$ is 10 $\mu g/m^3$ and for PM_{10} is 15 $\mu g/m^3$.

The total health impacts are calculated using the equation presented earlier in the Chapter, which can now be schematically represented as follows.

Figure 20: Schematics of health impacts assessment

Table 11: Health impacts of road transport emissions in India (numbers rounded)			
	2010	2030 BAU	2030 LE5-15UPT
Total population (billion)	1.2	1.5	1.5
Mortality			
Premature mortality (lower bound)	18,500	59,500	26,500
Premature mortality (higher bound)	49,500	158,500	70,500
Morbidity			
Adult Chronic Bronchitis	60,000	190,000	85,000
Child Acute Bronchitis	430,000	1,370,000	610,000
Respiratory Hospital Admission	30,000	90,000	40,000
Cardiac Hospital Admission	8,000	24,000	11,000
Emergency Room Visit	0.6	1.7	0.8
Asthma Attacks	6.5	20.9	9.3
Restricted Activity Days (million)	55.8	178.7	79.2
Respiratory Symptom Days (million)	266.4	854.3	378.3

Figure 20: Premature mortality per year (higher bound) due to road transport emissions

The health impacts of air pollution from the transport sector are not insignificant – and the nature of the issue is that those areas with the most population density are most affected. The only way we can have a real impact on air pollution and GHG emissions from the transport sector is by addressing the issue on multiple fronts. Policy measures implemented in isolation, without a multipronged approach will not work. For example, setting fuel efficiency standards and enforcing them is important, but will work only if, among other conditions, roads are also maintained, traffic bottlenecks are eased through traffic management, vehicles maintenance is promoted, and the fuel used is unadulterated. Unless behavioral change gets people to use more public and non-motorized transport, emissions will continue to be a big issue. This will require a concerted and coordinated effort between multiple stakeholders like individuals, industry, and the government. The government needs to provide resources towards public transport to implement policies that fall outside the purview of transport (for instance urban zoning) and the industries can provide incentives to employees to spur the use of public transport.

Unless air pollution is addressed on multiple fronts in conjunction with one another, it will continue to be a significant issue for health impacts on population and GHG emissions for climate policy.

"A developed country is not a place where the poor have cars. It's where the rich use public transportation." Enrique Penãlosa, Mayor of Bogota, Columbia

Annex Material

The emission totals by vehicle type and fuel type, and by State and City are available online @ <u>http://www.urbanemissions.info</u>

TATE: DELH

HDT

LDT
HDT
BUS
4W
3W

= 2W

GAS

DIESE

BUS

$\begin{array}{|c|c|c|c|c|c|} \hline \hline 0 & \mathbf{J} \mbox{ I C M I C I I AVII I NADU} \\ \hline \hline \mbox{ I C M I C I I AVII I I AVII AVII I AVII AVII I AVII I AVII AVII AVII AVII I AVII I AV$

Sample sheets for States and Cities

URBANEMISSIONS.info